FISHERIES RESEARCH INSTITUTE
School of Fisheries
University of Washington
Seattle, Washington 98195

ORIGINS OF CHINOOK SALMON IN THE AREA OF THE JAPANESE MOTHERSHIP SALMON FISHERY

bу

Donald E. Rogers, Katherine W. Myers, Colin K. Harris, Curtis M. Knudsen, Robert V. Walker, and Nancy D. Davis

Final Report

Contract No. 84-0152
July 1, 1983 to September 30, 1984
Alaska Department of Fish and Game
Commercial Fisheries Division

Approved

Submitted September 28, 1984

Director

•			
	•	b	

TABLE OF CONTENTS

																									1	Page
LIST																										iii
LIST																										v
ABSTR	ACT:			۰		•	•			•	•	•		•		•	•		٠	•	•			•	•	ix
ACKNO	WLED	GME N1	rs .	•			•					•	•		•			•	•	•	•	•	•		•	хi
I.	INT	RODUC	TIO	V			•							•												1
II.	DES	CRIPT	CION	OF	TH	E J		ANE	SE	MC	T	HER.	RSE	IIE	•											. 3
III.	CURI	RENT	STAT	rus	OF	KN	IOW	LEC	GE	10	1 (RI	G]	INS	3 0	F			•	•	•	•	•	•	•	J
		HINO(IGH S																							_	7
	••••																									
	A.	Info																								7
	В.	Info	rmai	tio	n f	ron	a S	cal	e :	Pat	:te	r	ı A	lπε	al y	's i	s									8
	C.	Othe	er St	tud	ies	•	•		•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	9
IV.	MET	HODS							•	•		•				•	•		•		•		•		•	11
	Α.	Meth	nods	of	Sc	ale	A	gei	ng	ar	ıd	Me	as	uı	eπ	et	ıt				•	•			•	11
		1.	Sam	-1-	D	25.	. = .	ri.	_																	11
																										11
		2.	Age	Lng		• .	:	• •	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	٠	•	٠	
		3.	Scal																							13
		4.	Meas																							13
		5.	Data	a R	e fo	rma	itt	ing	a	nd	Sc	al	.e	Cì	ar	ac	te	ers	3	•	•	•	•	•	٠	14
	в.	Defi																								
		Po	pula	ati	on		•	• •				•		•								٠				14
	C.	Cons																								15
		1.	Def:		+ i a	n .	· F	C a #		~ = -																15
			Broo																							
		2.																					•	•	•	LJ
		3.	Run aı		ze Wei																			•	•	16
	D.	High	Sea	as	Sca	le	San	m p 1	.es	aı	nd	As	sc	ci	Lat	ed	l									
	_ •		010																	_	_					17
	E.	Stat																								18
		1.	Disc	cri	min	ant	T	ech	mi	que	3															18
		2.	Para									•														-18
		3.	Met																•	٠	•	-	٠	-	•	
		٠.			cti																			_		19
		4.	Dat														•	•	•	•	•	•	•	•	•	
		→•			cti			auc	. 3	ca.	. ~	U	ıdl	. a (19

		I	Page
v.	RE ST	JLTS	21
	A.	Age Determination of the 1975-81 High	
		Seas Samples	21
		1. Comparison of JFA and FRI Age Determinations	21
		2. Age/maturity Composition of the 1975-81	
		Mothership and Landbased Driftnet Catches	21
	В.	Differences in Scale Patterns Between	0.0
	_	Regions	22
	C.	Classification of Standard Samples	22
	D.	Point Estimates of Stock Composition and Confidence Intervals	23
VI.	DISC	CUSSION	25
	Α.	Mothership Bering Sea Region (MS-BS)	25
	В.	Mothership North Pacific Region (MS-PAC)	26
	C.	Landbased Driftnet Region (LBDN)	27
	D.	Comparison With Previous Chinook	
	_	Scale Pattern Analyses	27
	E.	Comparison With Information From Tagging	29
VII.		MATES OF INTERCEPTIONS BY	0.3
	HI	GH SEAS FISHERIES	31
	Α.	Methods	31
	В.	Results	32
		RALL SUMMARY AND CONCLUSIONS	35
		RATURE CITED	41
FIGURE			
TABLES	_		61
APPENI		'IGURES	97 107

LIST OF FIGURES

rig.						ŀ	age
1.	Areas fished by the Japanese mothership and land-based driftnet fisheries in 1959-76 (upper panel) and 1978-present (lower panel)	•	•	•	•	•	47
2.	Fishing effort, catch and catch-per-unit-of-effort (CPUE) of chinook salmon for the Japanese mothership salmon fishery during June 21 - July 31, 1963-83, by sub-areas	•	•	•	•	•	48
3.	Coastal tag recoveries of chinook salmon released in the Bering Sea and North Pacific Ocean (W of 155°W) 1956 to 1982	•	•	•	•		- 49
4.	Summarized results of Major's et al. (1977b) chinook scale pattern study	•	•	•	•		50
5.	Age 1.4 chinook salmon scale from the Kamchatka River, U.S.S.R. (6/16/80) showing the measurement axis and life history zones measured for the scale pattern analysis	•			•	•	51
6.	Bold lines mark the study for chinook scale analysis, stratified into three regions (MS-BS = mothership fishery in Bering Sea; MS-PAC = mothership fishery in North Pacific; LBDN = landbased driftnet fishery), 15 50-longitude sub-areas, and INPFC 20-latitude x 50-longitude statistical areas	•	•	•	•	•	52
7.	Mixing proportion estimates (%) by sub-area and month (1975-81) for immature age 1.2 chinook salmon of Asian origin	•	•	•			53
8.	Mixing proportion estimates (%) by sub-area and month (1975-81) for immature age 1.2 chinook salmon of western Alaskan origin	•	•	•	•		54
9.	Mixing proportion estimates (%) by sub-area and month (1975-81) for immature age 1.2 chinook salmon of central Alaskan origin	•	•	•		•	55
10.	Mixing proportion estimates (%) by sub-area and month (1975-81) for immature age 1.2 chinook salmon of southeastern Alaskan and British Columbian origin	•		•		•	56

Fig.							F	age
11.	Mixing proportion estimates (%) by sub-area and month (1975-81) for immature age 1.3 chinook salmon of Asian origin	•	•	•		•	•	57
12.	Mixing proportion estimates (%) by sub-area and month (1975-81) for immature age 1.3 chinook salmon of western Alaskan origin	•		•	•	•	•	58
13.	Mixing proportion estimates (%) by sub-area and month (1975-81) for immature age 1.3 chinook salmon of central Alaskan origin							59
14.	Mixing proportion estimates (%) by sub-area and month (1975-81) for immature age 1.3 chinook salmon of southeastern Alaskan and British Columbian origin	•	•	•		•		60
A1.	Plots of scale characters for brood year 1971A standards (used to classify age 1.2 chinook sampled in 1975)		•	•	•	•	•	99
A2.	Plots of scale characters for brood year 1972A standards (used to classify age 1.2 chinook sampled in 1976)	•	•	•	•	•	•	100
A3.	Plots of scale characters for brood year 1973A standards (used to classify age 1.2 chinook sampled in 1977)	•						101
A4.	Plots of scale characters for brood year 1974A standards (used to classify age 1.2 chinook sampled in 1978)	•	•	•	•	•	•	102
A5.	Plots of scale characters for brood year 1975A standards (used to classify age 1.2 chinook sampled in 1979)				•			103
A6.	Plots of scale characters for brood year 1976A standards (used to classify age 1.2 chinook sampled in 1980)			•	•		•	104
A7.	Plots of scale characters for brood year 1977A standards (used to classify age 1.2 chinook sampled in 1981)							105

LIST OF TABLES

Table	e	Page
1.	Fleet size, fishing effort (millions of tans), and salmon catches (millions of fish) by the Japanese mothership salmon fishery, 1952-1983	. 61
2.	Catches of chinook salmon (in thousands of fish), effort (millions of tans) and CPUE in areas 5 (June-July) plus 8 and 10 (6/21-7/31) and for the total mothership fishery, 1952-83	. 62
3.	Recoveries of coded-wire tagged chinook salmon by U.S. observers on foreign or joint-venture ground-fish vessels in waters west of 155°W, 1981 to July 1984	. 63
4.	Sixty scale characters calculated for use in the scale pattern analyses	. 65
5.	Sample sizes of digitized scales in various strata of region, brood year, ocean age, and sex, which were used in ANOVAs to assess variability due to the four factors	. 67
6.	Results of ANOVA series I (4 regions x 2 brood years x 2 ages x 2 sexes)	. 68
7.	Results of ANOVA series II (3 regions x 3 brood years x 2 ages x 2 sexes)	. 69
8.	Brood-year standards needed to classify immature ages 1.2 and 1.3 chinook salmon in the 1975-81 high seas samples	. 70
9.	Chinook salmon run size indices, 1976-83, used in the construction of brood-year standard samples for a) Asia, b) western Alaska, c) central Alaska, and d) southeast Alaska and British Columbia	. 71
10.	Estimated age compositions for Asian chinook salmon stocks represented in FRI scale collection, based on FRI age determinations and on subsamples of scales which could be completely aged	. 73
11.	Estimated age compositions for western Alaska chinook salmon stocks represented in FRI scale collection, based on FRI age determinations and on sub-samples of scales which could be completely aged	. 74

		Page
12.	Estimated age compositions for central Alaska chinook salmon stocks represented in FRI scale collection, based on FRI age determinations and sub-samples of scales which could be completely aged	. 76
13.	Estimated age compositions of southeast Alaska and British Columbia chinook salmon stocks represented in FRI scale collection, based on FRI age determinations and sub-samples of scales which could be completely aged	. 77
14.	Comparison of Japan Fisheries Agency (JFA) and Fisheries Research Institute (FRI) age determinations of chinook salmon scales, in 1975-81	. 79
15.	Summary of mixing proportion estimates obtained in 1975-81 scale analysis of immature age 1.2 chinook salmon, by region-of-origin	. 80
16.	Summary of mixing proportion estimates in 1975-81 scale analysis of immature age 1.2 chinook salmon, by western Alaskan "river"-of-origin	. 81
17.	Summary of mixing proportion estimates obtained in 1975-81 scale analysis of immature age 1.3 chinook salmon, by region-of-origin	. 82
18.	Summary of mixing proportion estimates in 1975-81 scale analysis of immature age 1.3 chinook salmon, by western Alaska "river"-of-origin	. 83
19.	Mean regional stock proportion estimates (%) for chinook salmon in the mothership fishery area, obtained by Major et al. (1977b) and in the present (FRI) study	. 84
20.	Estimates of the mothership fishery catches (in thousands of fish) of immature chinook salmon by region of origin	.· 87
21.	Average regional stock compositions in the mother- ship fishery for the Bering Sea and North Pacific areas, 1975-77 and 1978-81	. 89
22.	Regional estimates of the high seas (MS = mother- ship, LBDN = landbased driftnet) catches of chinook salmon (in thousands of fish), 1964-1983	. 90

					Page
23	•	Coastal catches and estimated high seas (MS + LBDN = mothership + landbased driftnet) catches of chinook salmon, 1964-83 (in thousands of fish)	•		91
24	•	Estimates of the inshore and combined (inshore run plus high seas catch) runs of chinook salmon to western Alaska, 1965-1983 (thousands of fish)			92
25	•	Escapement-return statistics for the Nushagak chinook salmon stock (numbers in thousands of fish)			93
2 6	•	Average annual catches (in thousands) of the mothership fishery in years when effort was greater than 1,000 tans, by sub-area and period, 1956-77 and 1978-83		•	94
27	•	Average annual CPUE (catch per tan x 100, for year when effort was greater than 1,000 tans) of the mothership fishery by sub-area and period, 1956-77 and 1978-83	•		95
Al	-	A7: Estimated age and maturity composition of 1975-81 mothership catches of chinook			107
В1	<i>,</i> =	B7: Estimated age and maturity composition of 1975-81 landbased driftnet catches of chinook			117
C1	-	C7: Decision arrays (=classification matrices) for immature age 1.2 fish			129
D1	-	D7: Decision arrays (=classification matrices) for immature age 1.3 fish			165
El	-	E7: Regional stock mixing proportion estimates for immature 1.2 fish			181
Fl	-	F7: Regional stock mixing proportion estimates for immature age 1.3 fish			195
G1	-	G7: Western Alaska river and regional stock mixing proportion estimates for immature age 1.2 fish	•	•	202
н1	-	H5: Western Alaska river and regional stock mixing proportion estimates for immature age 1.3 fish			211

					·	
					•	
			*			У
	•					
						3
						•
			•			
)
						- '
-						

ABSTRACT

Record 1980 Japanese mothership fishery catches of chinook salmon (704,000) intensified concern about the impact of high seas interceptions on U.S. origin fish. The goals of this study were to update and refine estimates of the stock origins of mothership chinook catches in Bering Sea (MS-BS) and North Pacific Ocean (MS-PAC) fishery areas and to assess the impact of high seas fishing on Alaskan salmon stocks. Because annual chinook catches by the Japanese landbased driftnet (LBDN) fishery since 1979 (except 1980) have exceeded mothership catches, stock origins of chinook in the LBDN area were also determined.

Linear discriminant analysis of scale pattern data was used to determine the stock origins of immature ages 1.2 and 1.3 chinook sampled on the high seas (40°-62°N, 160°E-175°W) in 1975-81. Samples were classified to region (Asia, western Alaska, central Alaska, southeast Alaska/British Columbia) and, if western Alaska was the predominant stock, to western Alaska "river" (Yukon, Kuskokwim, Bristol Bay) of origin. Stock compositions of the 1975-81 catches were used to estimate the interceptions by the mothership and landbased fisheries (1964-83), and high seas catches of western Alaska chinook were apportioned to the year of inshore run (1965-83). The scale samples and stock composition and interception estimates for "western Alaska" and "Yukon" included Canadian Yukon stocks.

Immature age 1.2 fish comprised the majority of chinook in the 1975-81 mothership and LBDN catches, and immature age 1.3 fish were the next most abundant group. Western Alaska was the predominant stock of both age classes in the MS-BS area and an important secondary stock in the MS-PAC and LBDN areas. In terms of relative abundance, Yukon appears to be the overwhelmingly predominant western Alaska stock in the MS-BS, followed in order of abundance by Kuskokwim and Bristol Bay. Central Alaska was the predominant stock of both age classes in the MS-PAC and LBDN areas, and was present in lower abundances in the MS-BS. Asia was an important secondary stock for both age classes in all fishery areas. Abundances of southeast Alaska/British Columbia chinook, though higher in the North Pacific Ocean, were low compared to other stock groups in all fishery areas. These results are corroborated by tag recovery information.

Stock composition and interception estimates were compared to estimates from previous studies. Estimates of stock composition for the MS-BS and interceptions of western Alaskan chinook salmon by the mothership fishery were similar to prior estimates. Estimates of the interceptions of Asian chinook by the mothership fishery averaged less than one-half of the previous estimates. Estimates of interceptions of central Alaskan chinook were not calculated by previous studies, but our results indicate that in recent years they have contributed almost as many fish to the mothership fishery as have western Alaska stocks. Previous studies have apportioned all LBDN catches to Asia, but our results show that central Alaska has often contributed the majority of chinook salmon to the LBDN fishery.

Exploitation rates were used to evaluate the impact of high seas fishing on Alaskan chinook salmon stocks. A lack of run size estimates prevented calculation of high seas exploitation rates for central Alaska chinook stocks, but we believe they are probably substantial. High seas interceptions since 1978 may be as high as 10% of the stocks originating in southeast Alaska and British Columbia. We estimate that the high seas fisheries caught an average of 26% of the western Alaska runs during the period 1965-1977 and 14% since 1978. Reduction in high seas catches in the MS-BS (sub-areas 8 and 10) might benefit coastal chinook fisheries in western Alaska, but would probably result in increased catches of Bristol Bay sockeye and central Alaskan chinook in the MS-PAC (sub-area 5) if effort were simply shifted to that area. The lack of reliable estimates of age composition and run size for most major chinook stocks severely limited our ability to assess the impact of high seas interceptions on U.S.-origin fish.

ACKNOWLEDGMENTS

We wish to thank numerous agencies and individuals for providing samples, data, advice, and other help in the three years of this study. A study of this scope would be impossible without such cooperation and assistance. First, we acknowledge the Alaska Department of Fish and Game, the National Marine Fisheries Service, and the North Pacific Fishery Management Council for recognizing the need for determining stock origins of the high seas chinook population and for contributing funding for various segments of the overall study.

Great assistance was provided by the many agencies (and, of course, their personnel) that directly or indirectly provided voluminous chinook scale samples, associated biological data, and information on various chinook salmon runs. These are the Japan Fisheries Agency, the U.S.S.R's Pacific Scientific Research Institute of Fisheries and Oceanography (TINRO), several branch offices of the Sport Fish and Commercial Fisheries Divisions of the Alaska Department of Fish and Game, the Department of Fisheries and Oceans (Canada), the Washington Department of Fisheries, the Quinault Indian Nation, Quileute Fisheries (Quileute Indian Tribe), the U.S. Fish and Wildlife Service, the National Marine Fisheries Service, the Oregon Department of Fish and Wildlife, and the California Department of Fish and Game.

Several present and past employees of the Fisheries Research Institute, including Ken Bruya, Greg Ruggerone, Walter Meyer, Brenda Rogers, Tsutomu Nishida, Marlin Hornberger, and Mindy Rowse, assisted variously in the collection and reading of scale samples and compilation of data.

Lastly, we appreciate the good services of Marcus Duke and Laverna Cobb of the Fisheries Publications Office in preparing the manuscript.

	•			
).
				J
				·.
, . .		·		

I. INTRODUCTION

The United States has been concerned for many years about the level of high seas interceptions of U.S.-origin chinook salmon, particularly by the Japanese mothership salmon fishery in the central Bering Sea. This concern was greatly intensified following the record 1980 mothership catch of nearly 704,000 chinook salmon (previous maximum was 554,000 in 1969; 1952-79 mean annual catch is 170,000). According to Major (1982), the 1980 mothership catch represented a potential yield loss to western Alaskan and Canadian Yukon fishermen of 5,700 mt. Major's result is based in part on provisional estimates of the proportion of western Alaskan chinook present in the mothership area, which were derived in a scale pattern analysis of 1966-72 samples (Major et al. 1977b). High seas interceptions of North American chinook salmon are of concern because the chinook resource is important to the economy of western Alaska (Meacham 1980) and because interceptions can be large despite full compliance with current regulations of high seas fishing established by the 1978 renegotiation of the International Convention for the High Seas Fisheries of the North Pacific Ocean (INPFC).1/. 1980 mothership catch of chinook in part prompted the Alaska Department of Fish and Game (ADF&G) to fund the Fisheries Research Institute (FRI) to apply scale pattern recognition techniques in a three-year study to update information on the continental origins of chinook salmon in the mothership fishery area. The National Marine Fisheries Service (NMFS) also contributed funding to the project when the INPFC's Sub-Committee on Salmon assigned as its first Special Panel Topic the origins of chinook salmon in the Bering Sea.

Since 1978 a considerable part of high seas salmonid research has been directed to determination of continental origins of all species of salmonids in the area of the Japanese landbased driftnet (LBDN) salmon fishery (south of 46°N), pursuant to Article III.1.(d) of the revised Protocol amending the International Convention for the High Seas Fisheries of the North Pacific Ocean. FRI's contribution to this research program, funded by the National Marine Fisheries Service, has included high seas tagging in 1980 and 1982, and scale pattern studies to determine origins of sockeye, coho, and chinook salmon in the LBDN area. The scale pattern study of chinook salmon was carried out as an extension of the study of chinook in the mothership fishery area. Certain work in the combined studies, including collection and processing of scales representing inshore areas, was also supported by the North Pacific Fishery Management Council through a study to determine origins of chinook caught incidentally by foreign trawl fisheries operating in the U.S. Fishery Conservation Zone (FCZ) off Alaska.

^{1/}The International Convention for the High Seas Fisheries of the North Pacific Ocean is the formal name of the treaty between the United States, Japan and Canada, and the International North Pacific Fisheries Commission (INPFC) is the organization created to carry out much of the work mandated by the treaty.

report presents the findings of the combined studies of chinook origins in the areas of the Japanese mothership and LBDN fisheries.

The objectives of this study were to 1) provide a historical review of the Japanese mothership fishery; 2) compile, summarize, and review available information regarding the origins and biology of chinook salmon caught by the Japanese mothership salmon fishery; 3) collect information and scale samples necessary to estimate the stock contribution of chinook salmon harvested by this fishery; 4) establish a method for scale measurement and data management; 5) identify gaps in chinook salmon scale sampling and provide recommendations for improved coverage; 6) compile coastwide chinook salmon data; 7) estimate the mixing proportions of contributing stocks in the fishery during the years 1975-81; 9) estimate stock contribution rates to the Japanese mothership fishery.

II. DESCRIPTION OF THE JAPANESE MOTHERSHIP SALMON FISHERY

Nineteen fifty-two was the first post-World War II year of operations of the Japanese mothership salmon fishery. The fishery expanded rapidly, soon becoming one of the world's largest salmon fisheries. Several authors have described this early fishery, including Manzer et al. (1965), Fukuhara (1971), Fredin and Worlund (1974), and Fredin et al. (1977), and much of this description came from those reports.

The fishing zone changed almost yearly between 1952 and 1958, and included part of the Okhotsk Sea during 1955-1958 (see Fig. 2 in Manzer et al. 1965). The eastern boundary, 1750W (175020'W south of Atka Island), was constant and was set by the INPFC. Until 1978, the other boundaries were mostly set by the Japan-Soviet Fishery Commission. mothership fishing area was constant between 1959-1976 (Fig. 1), although in 1973-1976, some areas within the general area were assigned shortened seasons and restrictions of the total fishing effort (see Fig. 4-4 in Fredin et al. 1977). Before the 1977 season, the new Soviet 200-mile zone was closed to fishing and in 1978, large areas outside of that zone were closed through the Japan-Soviet Fishery Commission. Also in 1978, the INPFC treaty was renegotiated to be made compatible with the newly implemented U.S. Fishery Conservation and Management Act (P.L. 94-265), and several time/area restrictions both inside and outside the new U.S. 200-mile zone and a complete closure of the area east of 175°E and south of 560N resulted. In 1979, the U.S.S.R. placed a fishing. period restriction on the area between 170°E and 175°E and between the U.S. 200-mile zone and 460N, to create the complex pattern of times and areas of operation under two international agreements depicted in Fig. 1. This pattern has remained unchanged through the 1984 fishing season.

Various schemes of spatial and temporal stratification exist for purposes of regulation and statistical reporting of the fishery. industry itself divided the total area into 169 blocks (mean size about 14,250 km², 110 km north to south and 130 km east to west). On a daily basis, only catcher boats assigned to a particular mothership were permitted to fish in a specified block plus one-half of an adjacent block. Official statistics for the fishery reported to the INPFC by the Japan Fisheries Agency (JFA) were according to 50-longitude region and month in 1952-53, 20-latitude x 50longitude area and month in 1954-59, 20 x 50 area and 10-day period in 1960-77, and 10 x 10 area and 10-day period in 1978 - present. Statistics for 1952-59 were reported subsequently by 2° x 50 area and 10-day period, and were published in Manzer et al. (1965). We used the early statistics in Manzer et al. (1965) for this report, although totals are slightly different from those in the official statistics published in the INPFC Statistical Yearbooks. For purposes of statistical analysis, Fredin and Worlund (1974) divided the mothership fishery area into 10 sub-areas (Fig. 1), which roughly correspond to 50-longitude bands on either side of the Aleutian Island chain.

Since 1955, the fishery has used nylon gillnets, and monofilament nylon quickly became the standard web material after its introduction in the early 1970's. Until 1978, each catcher boat could fish 15 km (+ 10% allowance) of net daily east of 170°25'E and south of a line connecting 47°N, 165°E and 48°N, 170°25'E. In that region, up to 60% of each net's length could be of 121 mm stretched mesh with the rest being 130 mm mesh. In other parts of the mothership area, a catcher boat could fish a maximum of 12 km (+ 10% allowance) of net, with mesh sizes 121 mm in 40% of the net and 130 mm in 60% of the net. In the period 1978 - present, the gear restrictions have been uniform throughout the fishery area: maximum length of a set is 15 km, minimum distance between two nets is 8 km in any direction at the time setting is completed, and mesh sizes are not less than 120 mm in 40% of the net and not less than 130 mm in 60% of the net (Japan Fisheries Agency, 1981). Fishing effort is usually measured in "tans" of gillnet, a tan being approximately 50 m.

Historically, the motherships ranged from 8,000-14,000 tons and were powered by 5000-7600 hp engines. Each had a crew of 300-350. Salmon were both canned and frozen aboard the mothership and the finished products were shipped to Japan by tending transport vessels. Each mothership was accompanied by about 30-40 catcher boats, some of which (2-6) acted as scout boats. Catcher boats were 75-100 tons and were powered by 270-450 hp engines. There were about 20 crewmen per boat. Presently, each mothership is accompanied by 43 catcher boats, two of which act as scouts. Prior to 1978, fishing in the Bering Sea generally lasted from mid-June to late July, whereas fishing in the North Pacific commenced in mid-May and continued into late July or August in some early years. Presently, the mothership fishery operates only in June and July, and fishing in the Bering Sea usually does not begin until late June.

The sizes of the mothership fleet and the average effort and catch by species are listed in Table 1. Chum, pink, and sockeye salmon rank one, two, and three in numbers caught, whereas chinook salmon catches rank a distant fifth and equal only about two percent of the chum salmon catch. The catch of chinook salmon and effort by year in sub-areas 5, 8, and 10 (the main areas presently fished) and the catch and effort in the total mothership area (excluding the Okhotsk Sea) are shown in Table 2.

Maturing and immature sockeye salmon of Bristol Bay origin were greatly protected by the restrictions on high seas fishing that were gained through the INPFC renegotiation; however, the potential for intercepting Alaskan and Canadian Yukon chinook salmon remained high. The total catches of sockeye since renegotiation have been comparable to those a few years before 1978, but the estimated catches of Bristol Bay sockeye in 1978-1980 have been the lowest since 1959. Conversely, the chinook catch by the mothership fishery, while somewhat lower than historical levels in 1978 and 1979, was by far the largest in history during 1980 (Table 2). The exceptional 1980 catch was due largely to

increased stock abundance in the Bering Sea and North Pacific (see CPUE columns in Table 2), but some targeting on chinook salmon because of the elevated abundance may also have occurred. In the years since the 1978 renegotiation, the chinook catch has continued to come mostly from areas where western Alaskan and Canadian Yukon stocks are thought to occur in high relative abundance.

With the closure of much of the historic mothership fishery area in 1977 and 1978, there has been a large increase in the effort in sub-area 5. Chinook salmon catches in that sub-area have increased since 1978 although the abundance (CPUE) is not as high there as in sub-areas 7 and 9 nor in the Bering Sea (Fig. 2). The generally lower chinook CPUE since 1978 in sub-areas 8 and 10 (except for 1980) may have been caused by changes in the distribution of fishing effort (particularly decreased effort in area E7558) because the abundance of the western Alaskan coastal runs has increased since 1978 and one would expect the CPUE in the Bering Sea to be at least as high as the values in the 1960s. However, it is also possible that the distribution and thus the availability of western Alaskan stocks may have changed since 1977 along with the change to a warmer climate than existed during the 1960's. We will examine the past and present impact of high seas fishing on western Alaskan chinook salmon stocks at the conclusion of this report.

.) · , the grant and the second of th

III. CURRENT STATUS OF KNOWLEDGE ON ORIGINS OF CHINOOK SALMON IN THE AREA OF JAPANESE HIGH SEAS SALMON FISHERIES

Information collected through the early 1970's on origins and distribution of chinook salmon in offshore waters was summarized by Major et al. (1978). Information collected since then has come from recovery of disc and coded-wire tags (Japan Fisheries Agency 1981; Dahlberg 1982; Wertheimer and Dahlberg 1983; A. Wertheimer, NMFS, personal communication; and C. P. Meacham, ADF&G, personal communication), from scale pattern analysis (Knudsen et al. 1983; Myers 1983), and from preliminary genetic (electrophoretic) studies (Utter 1978; Utter et al. 1979).

A. Information from Tagging

There have been only 14 coastal recoveries of chinook salmon tagged on the high seas west of 1550W in 1956-83 (Fig. 3). One of these was released near the Japanese coastal area of recovery, and is not shown on the figure. Nine of the 13 significant recoveries were made in western Alaska (Yukon River, Kuskokwim River area, and Bristol Bay area) from releases in the central and western Bering Sea. The four recoveries resulting from releases in a fairly restricted area just south of the central Aleutian Islands (INPFC areas 8050 and W7548) have been made in East Kamchatka, western Alaska, Yakutat area of southeast Alaska, and the upper Columbia River system. The recovery near Yakutat (No. 11 in Fig. 3) was made by an offshore troll fishery vessel. As most chinook in the Fairweather troll grounds are from non-local areas, it is impossible to ascertain the origin of the fish. This limited number of recoveries suggests that chinook in the Bering Sea are predominantly of western Alaska origin, while the origins of chinook in the North Pacific Ocean are more diverse.

One notable recovery from ADF&G inshore tagging experiments provides evidence of chinook migration between inland waters of southeast Alaska and the southeastern Bering Sea. The fish was tagged 25 July 1979 near False Point on the southeast side of Admiralty Island, and was recovered 20 February 1980 by a U.S. trawler about 12 nm northeast of Cape Sarichef near the western end of the Alaska Peninsula (C. P. Meacham, ADF&G, personal communication). The origin of the fish is not known, however.

In 1980 the INPFC member nations agreed to monitor high seas research catches and incidental salmonid catches by groundfish vessels in the U.S. Fishery Conservation Zone (FCZ) for salmonids missing the adipose fin, an indicator of the possible presence of a coded-wire tag (INPFC 1981). The vast majority of releases of coded-wire tagged chinook are from hatcheries south and east of the Alaska Peninsula. Since the monitoring began, there have been 29 recoveries of coded-wire tagged chinook salmon by U.S. observers on foreign groundfish vessels operating in waters west of 155°W (Table 3). There have been no recoveries of coded-wire tagged chinook from the mothership fishery

itself, despite the fact that U.S. observers have examined 3,837, 11,818, and 6,615 chinook in the mothership catches from the U.S. FCZ for missing adipose fins in 1981, 1982 and 1983, respectively. Nine of the 29 recoveries from incidental trawl catches were reported by Dahlberg (1982) and Wertheimer and Dahlberg (1983), and 20 were reported after Wertheimer and Dahlberg (1983) through 20 July 1984 (A. Wertheimer, NMFS, personal communication). Six of the recoveries were made in the southeastern Bering Sea; three of the fish were from Oregon, two were from southeast Alaska, and one was from central Alaska. The 23 recoveries made south of the Alaska Peninsula resulted from releases in central Alaska (2), southeast Alaska (9), British Columbia (8), and Oregon (4). Most of the coded-wire tag recoveries were from fish caught near the continental shelf break in late fall or early winter, while the fish externally tagged were caught and released in epipelagic waters in May to August.

B. Information from Scale Pattern Analysis

Prior to initiation of FRI studies, there has only been one attempt to apply scale pattern recognition techniques to determine origins of chinook salmon in offshore waters (Major et al. 1975; 1977a; and 1977b), although there have been a number of applications of the general technique to inshore situations (Koo and Isarankura 1967; Bohn and Jensen 1971; Kissner 1973; and Wilcock and McBride 1983). The research by Major and associates employed linear discriminant analysis to determine the origins of immature chinook salmon distributed in the Japanese mothership fishery area in 1966-72. The investigators established only two categories in their analysis, Asia and western Alaska (including the Canadian Yukon). The western Alaska standard sample consisted of scales collected in the Yukon, Kuskokwim, Kanektok, Togiak, and Nushagak Rivers. The Asian standard sample was composed of scales collected from maturing fish during Japanese mothership and research vessel operations in waters west of 170°E (i.e., an area adjacent to Kamchatka) in June and July, when maturing North American fish would likely be well east of 170°E. The authors used a discriminant function based on only the 1968 standards to classify the 1966-72 high seas samples, since the 1968 standards provided the highest classificatory accuracy. Both standards and high seas samples were pooled over age class and brood year. The 2-category analysis was done for all high seas samples, including those from areas where fish of non-Asian and non-western Alaskan origin are known to occur. Kamchatka River samples (1965-69) were made available late in the study, and the 1968 function was used to classify them as a test of the appropriateness of the function. The classification of known-Asian fish was accurate, averaging 85% (range 76-90% for each year).

The 1966-72 high seas samples were classified by the 1968 function according to strata of sub-area (after Fredin and Worlund 1974) and month, and the results for immature fish only are summarized in this report in Fig. 4 (a few erroneous values in Major et al. 1977b were

corrected by R. L. Major, NMFS, personal communication). The results showed a predominance of western Alaska fish in the central Bering Sea and a general increase of the estimates for western Alaska eastward from sub-area 6 to sub-area 10. The results for the North Pacific Ocean indicated lower composition of western Alaska fish in the population, yet there was still a general eastward increase in the estimates for western Alaska.

Chinook scale pattern studies by FRI have included a preliminary analysis of samples of age 1.2 and 1.3 immature chinook scales collected in the mothership and LBDN areas in 1980 (Knudsen et al. 1983), and an analysis of origins of chinook caught incidentally by the foreign groundfish fishery in the southeastern Bering Sea and northwestern Gulf of Alaska in 1978, 1979, and 1981 (Myers 1983). Knudsen et al. (1983) applied Cook's (1982) method, and employed five regional categories in initial analyses, 1) Asia, 2) western Alaska, 3) central Alaska, 4) southeast Alaska and British Columbia, and 5) Washington, Oregon, and California. Stock composition estimates for Washington-Oregon-California (for immature age 1.2 fish) were all low and not statistically significant throughout the study area northwest of 40°N, 175°W. western Alaska stock-group was found to predominate in the Bering Sea, and estimates for the group generally increased eastward. A wider diversity of stock composition was indicated for the region south of the Aleutian Islands. Asian fish predominated in the population of age 1.2 chinook south of the Aleutians, followed closely by western Alaska and southeast Alaska/British Columbia stock-groups. The incidence of Asian fish in the population of age 1.3 fish south of the Aleutians was lower, and western Alaska and southeast Alaska/British Columbia fish were the two most abundant components.

Myers' (1983) study also employed Cook's (1982 and 1983) technique, used the above-mentioned five categories, and included a separate series of analyses which broke the western Alaska stock-group into three major "river" categories (viz., Yukon, Kuskokwim, and Bristol Bay) when the regional analysis indicated western Alaska to be the predominant group. Generally, western Alaska was often found to be the predominant stock-group in the Bering Sea east of 180° (INPFC Areas 1 and 2), and the predominant "river" groups there were Yukon and Bristol Bay. Significant incidences of central Alaska, southeast Alaska/British Columbia, and Asian fish were also indicated for some strata. Sample availability permitted little inference about stock origins of incidentally caught chinook in the northwestern Gulf of Alaska.

C. Other Studies

Major et al. (1978) made some inference about the continental origins of chinook salmon in the area of the mothership fishery by examining the distribution of fish of various maturity stages. However, their analysis was useful mainly in monitoring the distribution of maturing Asian fish in the western part of the study area, and did not provide

information useful in assessing the relative abundances of Asian and North American fish throughout the study area.

Genetic studies employing electrophoresis were initiated to determine continental origins of chinook and chum salmon in the mothership fishery area (Utter 1978; Utter et al. 1979). However, due to the lack of genetic information for Asian stocks, they have not contributed substantial information.

IV. METHODS

Our general method of determining the stock composition of the high seas population was discriminant analysis of scale pattern data. Fish from a particular area grow in a characteristic manner determined by genetic and local environmental influences, and their growth is reflected in the pattern of circulus formation on the scale. Application of discriminant analysis entails obtaining standard scale samples to represent the major stock-complexes likely to populate the high seas area of interest, establishing discriminant rules based on differences in scale growth patterns between the standards, classifying high seas (= unknown) samples by the discriminant rules, and finally using the classification results to estimate stock composition of the population.

A. Methods of Scale Ageing and Measurement

1. Sample Preparation

Most scale samples were in the form of acetate impressions obtained from fisheries agencies, so that no further sample preparation was necessary. However, The U.S.S.R's Pacific Scientific Research Institute of Fisheries and Oceanography (TINRO) provided FRI with original scale samples of adult returns to the Kamchatka River in 1977, and the Kamchatka and Bolshaya rivers in 1980, 1982, and 1983. The scales were sorted under a binocular microscope, two non-regenerated scales that were closest in appearance to INPFC-preferred area scales (INPFC 1958) were selected for each fish, and an acetate impression was made for reading.

2. Ageing

Although most of the scale samples were already aged by the agencies that provided them, all inshore and high seas samples were re-aged by FRI scale analysts to ensure consistency in age composition data. Acetate impressions were examined under a microfiche reader to determine both freshwater and ocean age. Freshwater circuli were identified as those circuli closest to the center of the scale with a thickness and spacing considerably less than that of circuli closer to the outer edge of the scale (ocean circuli). Annuli were identified by a decrease in spacing and thickness of circuli and by breakage, interbraiding, and "cutting-over" of circuli. Age was designated by the European method (Koo 1962).

We found the most difficult part of chinook scale ageing was the determination of freshwater age. Although freshwater age determinations were complicated by the presence of regenerated and non-preferred area scales in the samples, the main problem was a lack of consistent criteria, both in the literature and from our own experience, for identification of age 0. chinook originating from over a large geographic area. We attempted to develop our own criteria in part by examining some scales of known-age fish, as other means of age validation were beyond

the scope of this study. However, these scales were primarily from coded-wire tagged chinook of hatchery origin from southeast Alaska to California, and therefore were not representative of the majority of the stocks included in our standards.

The difficulties of identifying age 0. chinook salmon by their scale patterns have been noted since the earliest investigations (Gilbert 1912). Rich's (1920) careful and detailed examinations of the scales of juvenile chinook salmon collected in the Columbia and Sacramento rivers led him to conclude that the scales of adult fish which emigrated to the ocean as fry (age 0.) in the fall cannot be distinguished by the appearance of the freshwater portion of the scale from yearlings (age 1.) which emigrated in the spring. No subsequent scientific investigations have disproved this conclusion, and scales of this type in the inshore and Japanese fishery samples were, no doubt, incorrectly aged as 1.'s by our methods.

The most reliable criterion that we had to identify age 0. chinook was the absence of a freshwater annulus. Chinook fry that emigrate to the ocean early in the spring of their first year are easily distinguished by the lack of a freshwater annulus or any check in the central portion of the scale resembling a freshwater annulus. Scales of this type in the inshore and Japanese fishery samples would have always been correctly aged as 0.'s by our methods.

Wild chinook fry which rear in fresh or brackish water prior to ocean emigration in their first spring or summer and age 0. chinook of hatchery origin often have "checks" or zones of closely spaced circuli in the first year of growth that resemble freshwater annuli. To distinguish these patterns from age 1. chinook, we used several criteria that involved a subjective comparison of zone sizes and spacing and thickness of circuli. Scales were identified as age 0.'s if: 1) the size of the first ocean zone was considerably smaller than the size of the second ocean zone; 2) spacing and thickness of circuli in the first ocean zone was considerably less than in the second ocean zone (after Koo and Isarankura 1967); 3) spacing and thickness of circuli in the portion of the scale closest to the focus were similar to spacing and thickness of circuli in the first ocean zone; and 4) spacing and thickness of first ocean summer circuli were similar to spacing and thickness of first ocean winter circuli (i.e., no distinct first ocean annulus).

Although FRI scale analysts were as consistent as possible in the use of these criteria to identify age 0. chinook, an examination of coded-wire tagged chinook scale samples of known age provided by the Washington Department of Fisheries (WDF) and the Department of Fisheries and Oceans Canada (DFO) showed that no single character or set of characters always resulted in an accurate freshwater age determination. A consistent bias in all FRI age determinations was that in cases where the analyst was not sure whether the scale was age 0. or 1., the scale was assigned a freshwater age of one. We decided that this was the best

 \cup

approach since our analysis was restricted to freshwater age 1. chinook and we did not wish to exclude from the data age 1. freshwater patterns difficult to interpret.

Because we had no samples of known age 2. chinook from which to develop ageing criteria, an additional problem was that of distinguishing fish with a freshwater annulus followed by extensive freshwater (plus) or estuarine growth and a check at ocean emigration from fish with a full second year of freshwater growth. As was the case for distinguishing ages 0. and 1. chinook, if the FRI analyst was not sure whether the scale was age 1. or 2., the scale was assigned a freshwater age of one, and additional freshwater growth after the annulus was assumed to be "plus" growth.

3. Scale Selection

We attempted to include only INPFC-preferred area (INPFC 1958) scales in the standard and high seas samples. Criteria for identification of preferred area scales were developed by examination of the appearance of scales taken from various, known areas of the body of chinook salmon. Scales from the preferred area were large, rounded, and symmetrical. Their sculptured (anterior) and unsculptured (posterior) fields had a relatively straight boundary, they had comparatively few complete circuli around the focus, and ocean circuli near the outer edge of the scale did not extend into the posterior field. When selecting scales from the TINRO smear samples, we chose two scales from each fish which best met the above criteria for preferred area scales. We also noticed numerous scales in the high seas samples, especially in those collected on board the motherships, which apparently were not taken from the INPFC-preferred area, and these were not included in the analysis.

Just prior to measurement, the scales selected for inclusion in the standard or unknown samples were re-examined to confirm our initial age determination. If there was disagreement, the problem was either resolved or the scale was not measured. When sample sizes permitted, we did not include a scale in a standard sample if the original agency's and our age determinations differed.

4. Measurement

We measured scales with a micro-computer based digitizing system developed at FRI in 1979 for INPFC-related research (Harris et al. 1980). Acetate impressions of the scales were rear-projected onto the digitizing surface at 104x, and the scales were aligned on a standard measurement axis. The measurement axis bisected the focus and was the perpendicular to the boundary of the sculptured and unsculptured fields of the scale (Fig. 5).

As requested by ADF&G, the following life history zones, illustrated in Fig. 5, were measured:

- Zone 1: center of focus through last circulus in the freshwater annulus.
- Zone 2: first circulus in freshwater plus growth zone through last freshwater circulus.
- Zone 3: first ocean circulus through last circulus in the first ocean annulus.

The outer edge of each circulus in these three zones was digitized (meeting the criteria of Tanaka, Shepard and Bilton 1969), and a FORTRAN program was used to calculate the linear distance between each circulus to the nearest .001 in. These measurements, along with sample identifiers and biological data, were transmitted to the University of Washington's CDC Cyber computer for analysis and permanent storage on magnetic tape. Raw data formats and codes are described in detail in Rogers et al. (1982).

5. Data Reformatting and Scale Characters

Raw data were transformed into several basic scale characters and reformatted for convenient analysis. These scale characters included the radius of the focus, the total sizes and numbers of circuli in the three defined zones, and the distances between every third circulus in Zone 1 and the combined Zones 2 and 3. From these basic scale characters, 60 scale characters (Table 4) were calculated for use in the scale pattern analyses.

B. Definition of the Study Area, Period, and Population

We restricted our study area to 40-62°N, 160°E-175°W (Fig. 6). High seas catches of chinook salmon in the study area include all mothership fishery catches and a weighted average of 83.7% of the LBDN fishery catches in the period 1972-83. All of the LBDN catches outside the study area were made west of 160°E. Spatial stratification of the study area was according to the following three levels: (1) regions, which correspond to the LBDN fishery, the mothership fishery in the North Pacific Ocean (MS-PAC), and the mothership fishery in the Bering Sea (MS-BS); (2) 5°-longitude sub-areas (the sub-areas in the mothership fishery area are virtually the same as defined by Fredin and Worlund [1974]; we defined sub-areas 11-15 for the LBDN fishery area); and (3) 2°-latitude x 5°-longitude INPFC statistical areas.

The study period was chosen to be June and July for the mothership area and May through July for the LBDN area, 1975-81. Study of chinook in the mothership area in May was not deemed necessary since May catches comprised a weighted average of only 2.6% of the annual mothership catch in 1972-77, and the fishery has not operated in May after 1977. The 7-year period 1975-81 was chosen because (1) it includes an entire "cycle" of high seas abundance (Ito and Takagi 1981); (2) it includes

the years 1980 and 1981 when the large 1976 year-class passed through the fishery; and (3) scale sampling in key (particularly Alaskan) inshore areas has improved markedly in recent years, providing the possibility for comprehensive and representative standard samples. Temporal stratification in the analysis was by month and 10-day period.

We restricted the scale pattern analysis to ages 1.2 and 1.3 immature fish, as age composition information available at the beginning of the study (Major et al. 1978; Ito and Takagi 1981) suggested that age .2 and .3 immatures comprised the great majority of the high seas samples, and our initial ageing work showed that freshwater age 1. fish greatly predominated.

C. Construction of Standard Samples

1. Definition of Categories

Two schemes were employed to establish categories for the discriminant analysis. By the first scheme we established four major regional categories (abbreviations in parentheses will be used in tables): (1) Kamchatka (Asia), which produces the great majority of Asian chinook salmon; (2) western Alaska (West), which includes Canadian Yukon River chinook stocks; (3) central Alaska (Cent); and (4) southeast Alaska and British Columbia (SEBC). In our pilot study of 1980 samples (Knudsen et al. 1983), we found virtually no indication that age 1.2 immature fish from Washington-Oregon-California occur to a significant degree in the study area, and therefore we did not establish a category for the region south of British Columbia in the overall analysis. The four categories mentioned account for the great majority of age 1. chinook production in the Pacific rim, and they correspond roughly to different environmental regimes in which the juvenile fish exist before intermingling on the high seas.

Considering the results of tagging experiments and previous scale pattern studies, we anticipated that at least for the Bering Sea region the present analysis would show the western Alaska stock-complex to predominate in the population. For this reason we used a second scheme to establish categories that broke the western Alaska complex into subregions or "rivers", to be used with the other regional categories in a second series of analysis. The three western Alaska "river" categories are (1) Yukon River (Yuk), which includes the Canadian portion of the population, (2) Kuskokwim district (Kusk), which includes the Kuskokwim and Kanektok Rivers and Goodnews Bay, and (3) Bristol Bay (Bris), which includes the Nushagak and Togiak Rivers (scales were not obtained for other chinook-producing systems in Bristol Bay).

2. Brood-year Standards

We considered two approaches to construct the necessary standard samples; i.e., brood-year standards (as used by Knudsen et al. 1983) or

pooled-year standards. Brood-year standards represent the same year-class as membered by the high seas samples being classified. Pooled-year standards would include scales from a number of successive brood-years. The brood-year standards would theoretically be the most representative and appropriate, but a considerable amount of effort is required to construct them. We performed a series of analyses of variance of scale data from inshore samples to examine the degree of variability attributable to brood year (as well as to other factors) and to determine which approach was warranted.

The analyses of variance were with respect to four factors: region, brood year, ocean age group, and sex. Data were drawn from the factor levels summarized in Table 5. Ocean ages were grouped into two levels, age .3 and age .4+ (i.e., age .4 and .5). The brood years available from the North American areas were 1974-76, but for Asia sample sizes dictated the inclusion of levels 1973-75.

Two series of ANOVAs were done, since the data available did not permit a totally crossed design. Series I included all four levels of region but only two levels of brood year (1974-75) which were totally crossed. Series II included only the three North American regions, but all three levels of brood year. For each ANOVA series, a separate analysis was done for each of the 19 scale characters employed by Knudsen et al. (1983). In all ANOVAs region, age group, and sex were considered fixed effects and brood year was considered to be a random effect. Because cell sample sizes were greatly unequal, the method of unweighted cell means was used (Winer 1971).

Results of these ANOVAs are presented in Table 6 (for series I) and Table 7 (for series II). In both series, region and brood year were in most cases highly significant factors, whereas significant F-values were infrequently obtained for ocean age group and sex. We conclude that the general method used by Knudsen et al. (1983) to construct standard samples is most appropriate, since the large variability due to brood year is controlled for by stratification. Because ocean age group was not a significant factor for most of the analyses, there might not be need to weight the brood-year standards by age. Nevertheless, we chose to continue the procedure as it should make the standard samples most representative of the total spawning population from each brood year. Sex was also a minor contribution to total variability, and we decided not to stratify the analysis further by sex or to consider sex as an additional weighting factor.

3. Run Size Indices, Inshore Age Compositions, and Weighting of Standard Samples

A total of 14 different brood-year standards (Table 8) for each regional and river category was needed to classify immature ages 1.2 and 1.3 chinook in the 1975-81 high seas samples. (In Table 8 and in all subsequent Tables and Appendix Tables that reference brood year in con-

junction with the abbreviations for standard categories, a letter "A" following the brood year indicates a standard used to classify age 1.2 fish sampled 4 years later, and a "B" indicates a standard for classifying age 1.3 fish 5 years later.) The brood-year standards were constructed to represent the various ages at which fish in the high seas samples mature, in proportion to their relative abundance in successive runs. We also weighted the various represented stocks within the regional or "river" categories according to best estimates of relative abundance. Although published age composition information exists for a number of the major stocks, we used our own age composition data (based on the entire sub-samples provided by numerous agencies) to maintain consistency with age determinations of the high seas samples. Because scale sampling is usually done from commercial or other catches by selective gear, the age compositions calculated represent the entire runs with various degrees of bias.

The general procedure for weighting the standard samples is as follows, although sample availability for some categories necessitated departure from the strategy. Run strength indices (Table 9) and estimated age compositions (Tables 10 to 13) were used to determine a total return for each age class and for each stock and year. These were added within category and brood year to obtain a total brood-year return, and the proportion of the total brood-year return represented by each age class and stock was computed. This proportion was then multiplied by the total desired sample size (200 scales) to determine the number of scales needed from each age class and stock. When this number slightly exceeded the number of scales available, the deficiency was made up by substituting scales from other age classes from the same stock and brood year. Final sample sizes of less than 200 occurred for some standards because (1) sample availability did not permit a size of 200, so the weighting was based on a smaller yet maximum sample size that permitted proportional representation of constituent stocks; and/or (2) after constructing the standards we considered a few scales to be aberrant and deleted them.

D. High Seas Scale Samples and Associated Biological Data

The Japan Fisheries Agency (JFA) was requested, through the INPFC, to provide scale impressions and associated biological data for all chinook salmon sampled during research vessel and mothership operations in the study area in May through July south of 48°N and in June and July north of 48°N, 1975-81. All samples were aged by JFA biologists, and their determinations were coded on the data sheets. Maturity determinations, based on criteria listed by Ito and Takagi (1981), were also coded on the sheets. All scales were re-aged by FRI biologists, and the FRI age determinations were coded on the biological data provided by JFA. High seas samples for 1981 also included scales collected by U.S. observers on the salmon motherships in the U.S. FCZ (mainly in areas E7048, E7050, and E7052). Biological data accompanying those samples

did not include maturity determinations, but the great majority of the fish sampled by the observers would have been immature.

The age and maturity composition of the high seas chinook catches must be estimated in order to apply the stratified results of the present scale analysis and then to estimate the regional stock composition of the catches. Records in the biological data representing fish caught by commercial-type gillnet were tallied according to age (FRI determination) and maturity group by month/sub-area strata, and the resulting vectors of proportions were multiplied by the reported commercial catches in the same strata. The freshwater and/or ocean age could not be determined for many fish of known maturity stage. As we wished to use as much of the biological information as possible, we used the following hierarchical procedure to estimate age/maturity composition. For each month/sub-area stratum, the numbers of known maturing and immature fish were added to give the total effective sample size, and the proportions in each maturity category were calculated. Within each maturity group, proportions in each ocean age group were calculated (fish older than .4 were pooled with .4 fish; fish of indeterminable ocean age were ignored), and these proportions were multiplied by the proportion for the maturity category. A similar hierarchical procedure was used to obtain the proportions by freshwater age group within the immature age .2 and .3 categories. The resulting vector of proportions was applied to the commercial catch in a stratum only if the effective sample size was at least 25 fish. The sample sizes for strata representing the LBDN area were generally less than 25, and therefore the vectors used for sub-areas 11-15 were based on fish sampled south of 50°N.

E. Statistical Methodology

1. Discriminant Technique

Previous FRI scale pattern analyses of sockeye and coho origins and Knudsen's et al. (1983) preliminary analysis of chinook origins have all employed a non-parametric discriminant technique developed by Cook (1982). For the present analysis we chose to use linear discriminant analysis, as applied by commercial software (program BMDP7M; see Brown et al. 1983), for the following reasons: (1) ADF&G routinely uses linear discriminant analysis and urged our use of the technique for consistency; (2) the BMDP package program includes character selection; (3) the BMDP program is considerably less expensive to execute than the series of programs that apply Cook's technique; and (4) the two techniques, using the same test data, scale characters, and a priori probabilities, yielded classification matrices with column vectors that were not significantly different.

2. Parameter Estimation

The methods of point and variance estimation are the same as used in our previous studies (Cook 1982), except that the variance estimator

of Pella and Robertson (1979) was used even in 2-category analyses. We developed estimates for all strata represented by at least 25 fish of an age/maturity group. Although our main interpretation is based on strata of sub-area and month, we also made estimates for finer strata, including INPFC 2° x 5° statistical area, and also 10-day period crossed with each spatial level.

3. Method of Collapsed Analysis and of Selecting "River" Analyses

The matrix correction procedure used to obtain point estimates can result in negative estimates for one or more categories, indicating that such categories are not present in the population. The estimates for the remaining categories must be revised to sum to 1.0 and thus be reasonable. Cook (1983) suggested an algorithm for constraining estimates obtained in the full N-way analysis, to accommodate such situations. However, we chose to continue the earlier method of collapsing and repeating the analysis to include only the categories indicated to be present. This approach is expensive in personnel and computer time, but it has intuitive appeal, and it allows use of different sets of scale characters that best separate the remaining categories.

In all cases in which western Alaska was found, after any collapsing, to be the predominant regional stock, we did an analysis employing the western Alaska "river" standards plus any remaining regional standards. For instance, if a regional analysis collapsed to western and central Alaska and Asia, western Alaska having the highest estimate, a 5-way "river" analysis was then done, employing standards for Yukon, Kuskokwim, Bristol Bay, central Alaska, and Asia.

4. Data Checking and Scale Character Selection

A considerable amount of screening and checking was done to ensure quality of data. As mentioned earlier, raw data (in ADF&G format) were transformed into basic scale characters and reformatted for convenient analysis. Distances between every third circulus in the three defined zones were calculated. Scales having a (magnified) distance of over 1.0 inch for any circulus triplet were excluded from the analysis, as such wide triplets were often due to broken or otherwise aberrant circuli. Scales with fewer than five circuli in the first year were also excluded, as they were suspected to be incorrectly aged, regenerated, or possibly non-preferred. The data were screened by a computer program that identified all scales with values for basic characters outside of allowable ranges, and such scales were re-examined. After the standard samples were constructed, basic statistics were calculated for some of the scale characters used in the analysis. Scales with a value outside of four standard deviations on either side of the mean for these characters were re-examined, and were excluded if ageing or measurement errors were found. Lastly, all type C scales (i.e., those judged non-preferred) were excluded from the analysis.

The format requested by ADF&G included delineation and measurement of zone 2 (i.e., "plus growth" between the freshwater annulus and the first true ocean circulus). However, scale readers were not confident about the accuracy or consistency of identifying freshwater plus growth. For this reason, characters that involved zone 2 or zone 3 separately were not included in the analysis. We also did not include scale character 38 (Table 4), the radius of the focus, since differences among stocks for this character might be related to differences in the quality of the scale collections provided by the various agencies.

Character selection was done by the BMDP program according to a stepwise procedure employing 4.0 as the F-value for variable entry. We modified the procedure by considering also classificatory accuracy. This required two runs of the program for each analysis, the first run employing only the standard samples. The BMDP program outputs a "jack-knifed" (i.e., "leaving-one-out") classification matrix at each step of variable entry. Sometimes as additional variables are entered, overall classificatory accuracy decreases. In such cases we specified in the final run inclusion of only those variables which had resulted in the highest overall classificatory accuracy. In cases where the highest accuracy was attained by two or more different sets of characters, we chose the character set that provided the highest accuracy for the stock with the greatest misclassification error rate.

V. RESULTS

A. Age Determination of the 1975-81 High Seas Samples

1. Comparison of JFA and FRI Age Determinations

FRI age determinations are generally similar to those of JFA. Table 14 shows the compositions, determined by FRI and JFA analysts, of the samples of chinook caught by commercial-type gillnet in May-July, south of 62°N and between 160°E and 175°W. Both agencies showed age .2 fish to predominate in the samples of maturing fish. The mean composition of age .2 maturing fish (in the fraction of the total samples that could be aged) was 11.0% according to JFA and 13.1% according to FRI. Both agencies also showed age 1.2 fish to predominate greatly in the samples of immature fish (1975-81 mean percent composition is 72.1% according to JFA and 69.2% according to FRI). The largest absolute difference in estimated percent age composition occurred in the 1980 samples in which the percent composition of the predominant age 1.2 immature group differed between the two agencies by 5.2% (this absolute deviation represents a 6.6% "error" from the JFA figure). FRI analysts were in general more conservative in age reading, as they considered a much larger number of fish to have regenerated freshwater or ocean portions of the scale.

2. Age/maturity Composition of the 1975-81 Mothership and Land-based Driftnet Catches

Estimates of age/maturity composition of the mothership and LBDN catches are presented in Appendix Tables Al-A7 and Bl-B7, respectively. Biological data were sufficient to permit estimates for the majority of the annual catches of both fisheries. The mean percentage of unallocated catches (those in strata represented by fewer than 25 fish in the biological data) is 1.9% for the mothership fishery and 17.0% for the LBDN fishery.

The compilation in Appendix Tables A1-A7 supports Major's et al. (1978) and Ito and Takagi's (1981) conclusions that the great majority of the mothership fishery's chinook catches consists of immature fish. The 1975-81 unweighted mean percentage of immature fish in the catch is 94.1% (range 89.0% in 1977 to 98.2% in 1980). Most of the maturing fish (mean 82.0%) are caught in June. Ocean age .2 fish predominated in the catches, comprising unweighted averages of 74.5% and 91.5% of the catches of maturing and immature fish, respectively. Immature age 1.2 fish made up the great majority (mean 84.9%, range 75.6% to 88.5%) of the total annual catch. Immature age 1.3 fish comprised the second most abundant group, accounting for an average of 7.0% of the annual catch. Freshwater age composition was examined only for age .2 and .3 immature fish. Within these two ocean age groups, the mean percent compositions of age 0., 1., and 2. fish were 0.6%, 98.5%, and 0.9%, respectively.

Care must be taken when assessing the age/maturity composition of the LBDN catches (Appendix Tables B1-B7) as in some (especially later) years a considerable fraction of the annual catch could not be allocated because of insufficient biological data. The percent composition of immature fish in the LBDN catches (mean 97.6%) appears to be higher than in the mothership catches. This estimate is to some extent biased upwards because cases of insufficient biological data precluding estimates most often occurred for May and June, when maturing fish are most available. As in the mothership fishery catches, ages 1.2 and 1.3 immature fish comprised the majority of the LBDN catches (1975-81 mean percent compositions of the two groups are 78.3% and 15.6%, respectively).

B. Differences in Scale Patterns Between Regions

In Appendix Figures 1-7 the means, standard deviations, and ranges are plotted for four basic scale characters (size of zones 1 and 2+3 and number of circuli in zones 1 and 2+3), for each brood-year regional standard sample used to classify age 1.2 fish. Although these four characters were not used in every separate analysis, they are useful in providing an overview of the salient differences in scale patterns between the regional categories. Asian fish consistently had the smallest zone 1 and zones 2+3 of the scale. In all brood years but 1977, southeast Alaska/British Columbia fish had the largest mean size of zone 1. Western Alaska fish, on the other hand, consistently had the largest mean size of the zones 2+3. The mean sizes of zones 1 and 2+3 of central Alaska fish were intermediate between those for Asia and southeast Alaska/British Columbia, and tended to be closer to the latter for size of zones 2+3. Southeast Alaska/British Columbia fish also had the greatest mean number of circuli in zone 1.

Scale characters (listed in Table 4) selected most often by the stepwise algorithm of program BMDP7M in the regional analyses were those pertaining to early growth in the first ocean year (characters 34 and, to a lesser extent, 35 and 36) and to spacing of circuli over the first ocean year (character 21) and over the freshwater and first ocean years combined (character 9). Other characters frequently used in the regional analyses included scale size to the end of the first ocean annulus (character 6), total circulus count to the end of the first ocean annulus (character 7), and the proportion of the size of second year growth to the total size of the scale through zone 3 (character 11). Circulus spacing in the freshwater year (character 17) and proportion of scale size deposited in circulus triplets early in the first ocean year (characters 25, 26, and 27) were often used in analyses discriminating between western Alaska "river" stocks.

C. Classification of Standard Samples

The results of classifying the standards for all regional and western Alaskan "river" stock combinations used in the scale pattern analysis are presented for each age class and brood-year analysis in

Appendix Tables C1-C7 and D1-D7. Overall classification accuracies (calculated as the unweighted mean of the accuracies on the diagonal of the classification matrices) and the selected scale characters (listed in the order that they were entered into the linear function) are shown at the top of each matrix.

In the 4-way regional analyses classification accuracies for Asian, western Alaska, and southeast Alaska/British Columbia standards averaged over 70%. Correct classification of central Alaskan scales was lower, averaging 60%. Scales from Asian fish tended to misclassify most strongly towards western and central Alaska, those from western Alaska towards central Alaska and Asia, and those from southeast Alaska/British Columbia towards central Alaska. Scales from central Alaskan fish misclassified towards all other regions, errors being slightly higher towards southeast Alaska/British Columbia.

In the 6-way "river" analyses western Alaska river stocks misclassified primarily to each other. Accuracies for Yukon and Bristol Bay standards averaged 60%, and both stocks misclassified mostly to Kuskokwim. Kuskokwim classification accuracies averaged 48%, and misclassified mostly as Yukon and Bristol Bay.

D. Point Estimates of Stock Composition and Confidence Intervals

The mixing proportion estimates and associated 90% confidence intervals obtained by classifying the 1975-81 high seas samples are presented separately for the regional or western Alaska "river" analyses, age classes, and years in Appendix Tables El through H5. In these Appendix Tables, an estimate of "0" indicates that the stock is not present, and an estimate of "0.0" is a positive estimate less than 0.05.

Tables 15 to 18 summarize the point estimates by providing a tally of the number of estimates which indicate presence, absence, and predominance of the regional or "river" stocks, and the number of statistically significant estimates for the stocks. The term "significant" refers to a point estimate having a 90% confidence interval that does not include zero, and "predominant" refers to the stock having the highest mixing proportion estimate.

The following discussion is based primarily on the estimates obtained for the month/sub-area strata, because they are generally represented by adequate samples yet are sufficiently detailed to indicate spatial and perhaps temporal trends in stock composition. The month/sub-area estimates (from the regional analyses) are illustrated in Figs. 7 to 14.

A. Mothership Bering Sea Region (MS-BS)

Western Alaska (including the Canadian Yukon) was the predominant regional stock of immature ages 1.2 and 1.3 chinook salmon in most MS-BS sub-areas (Figs. 8 and 12). Estimated proportions of western Alaskan chinook usually increased from west to east, and were often highest in sub-area 10. The proportions of immature age 1.2 chinook of western Alaskan origin in the MS-BS increased from June to July in 1975, but decreased in 1976 and 1977. No June month/sub-area estimates were obtained for the Bering Sea after 1977, but the 1978 estimates for the entire MS-BS region also indicated a decrease in proportion of western Alaskan fish from June to July. In July 1980 proportions of immature age 1.2 western Alaskan chinook in sub-areas 8 and 10, where unusually large mothership catches occurred (Appendix Table A6), were 89% and 91%, respectively, and the proportion of immature age 1.3 western Alaskan chinook in sub-area 8 was 87% (Figs. 8 and 12). With the exception of sub-area 10 in 1975, these were the highest estimates for western Alaskan chinook in sub-areas 8 and 10 from 1975 to 1981.

Except for July 1980, Yukon was always the predominant western Alaskan stock of immature ages 1.2 and 1.3 chinook in MS-BS sub-areas 4, 6, and 8 from 1975-81 (Figs. 8 and 12). In sub-area 10, considerable year-to-year variability occurred in the proportions of Yukon, Kuskokwim, and Bristol Bay chinook. For immature age 1.2 fish in sub-area 10, Yukon predominated in 1975, 1978, and 1981; Kuskokwim was the dominant stock in 1976, 1979, and 1980; and Bristol Bay accounted for the highest proportion of western Alaskan chinook in 1977. Less information is available for immature age 1.3 fish in sub-area 10, but Yukon predominated in June 1977 and July 1981, and Kuskokwim was dominant in July 1977. High estimates for Kuskokwim in sub-areas 6 (49%) and 10 (60%) for immature age 1.2 chinook and in sub-area 8 (88%) for immature age 1.3 chinook in July 1980 (Appendix Tables G6 and H4) indicate that this stock was more prevalent in 1980 catches than in other years.

Asia, the next most abundant stock-group in MS-BS samples, was the predominant regional stock of immature age 1.2 chinook in only three month/sub-area strata (Fig. 7), and was the predominant stock (74.3%) of immature age 1.3 chinook in the entire MS-BS region only in June 1976 (Appendix Table F2). In general, spatial and temporal trends in the proportions of Asian chinook in MS-BS aub-areas were the opposite of those found for western Alaska.

Central Alaska was never a predominant stock in any of the MS-BS sub-areas for either age/maturity class. However, this stock was detected in more than half of the month/sub-area strata (Figs. 9 and 13), which indicates at least a low abundance of this stock in the MS-BS. Because of their low relative abundance, spatial or temporal

trends in stock proportions of central Alaskan chinook in the MS-BS were not evident.

Immature age 1.2 chinook of southeast Alaskan/British Columbian origin were found in less than half of the month/sub-area strata (Fig. 10), indicating a low abundance of this stock group in the MS-BS area. Our results also indicate that immature age 1.3 chinook of southeast Alaskan/British Columbian origin are present only in very low relative abundance in the MS-BS (Fig. 14).

B. Mothership North Pacific Region (MS-PAC)

Mixing proportion estimates indicate a broader mixture of stocks in the MS-PAC than in the MS-BS. In addition, there is often a dramatic shift in the predominant stock of immature age 1.2 chinook from western Alaska in the MS-BS region to central Alaska in the MS-PAC region. There also appears to be more divergence in stock composition between the two ocean age classes in the MS-PAC, and so the results for each age class are discussed separately.

3

Central Alaska, predominating in approximately three-quarters of the month/sub-area strata from 1975-81, was the dominant regional stock of immature age 1.2 chinook in the MS-PAC (Fig. 9). In June 1975-77, proportions of immature age 1.2 central Alaskan chinook were higher in sub-area 7 than in adjacent sub-areas. However, in July there appears to be a westward shift in their distribution, higher estimates occurring for sub-areas 1, 3, and 5 (Fig. 9). Central Alaska accounted for 65% of the age 1.2 chinook in sub-area 5 in July 1980, where unusually large mothership catches occurred (Fig. 9, Appendix Table A6). Except for July 1975, this was the highest estimate for central Alaskan chinook in sub-area 5 from 1975-81.

Western Alaska, the next most abundant stock-group in the MS-PAC region, was the predominant regional stock of immature age 1.2 chinook in only seven month/sub-area strata. Yukon was the predominant western Alaskan stock in all of these strata except for sub-area 9 in July 1979, where the highest estimate was for Kuskokwim (Fig. 8). Immature age 1.2 chinook of western Alaskan origin were particularly abundant in July 1978, when they predominated in all MS-PAC sub-areas but sub-area 5. Similar to central Alaska, western Alaskan chinook were also present in higher proportions in sub-area 7 than in adjacent sub-areas in June of 1975 and 1977. However, there were no discernable spatial trends in the proportions of western Alaskan chinook in the MS-PAC in July. Proportions of immature age 1.2 western Alaskan chinook often decreased from June to July in the MS-PAC (Fig. 8).

Immature age 1.2 chinook of Asian origin were present in over three-quarters of the month/sub-area strata, but Asia was the predominant stock in only four strata (Fig. 7). In contrast to central Alaska,

July estimates for Asia tend to increase from west to east, some of the highest significant estimates occurring in sub-areas 7 and 9.

Southeast Alaska/British Columbia chinook were present in just over half of the month/sub-area strata, but were never predominant (Fig. 10). These results suggest a low abundance of immature age 1.2 chinook of this stock in the MS-PAC.

For immature age 1.3 chinook, all regional and river stocks except southeast Alaska/British Columbia predominated in at least one month/sub-area stratum in the MS-PAC, indicating a diverse mixture of stocks in this fishery area (Figs. 11-14). Southeast Alaska/British Columbia chinook were either not present or were present in low relative abundance.

C. Landbased Driftnet Region (LBDN)

A paucity of samples permitted only eight month/sub-area estimates for immature ages 1.2 and 1.3 chinook in the LBDN (Figs. 7-14). Central Alaska was the predominant stock in seven strata and Asia in one, and central Alaska was the only stock present in all strata. Estimates for immature age 1.2 chinook of western Alaskan origin were as high as 32% in sub-area 11 and 26% in sub-area 14 in June (Fig. 8). Again, estimates for southeast Alaska/British Columbia indicate that this stockgroup was in low relative abundance (Figs. 10 and 14). No western Alaska "river" analyses were done for the LBDN region since the western Alaska regional stock was never found to predominate.

D. Comparison With Previous Chinook Scale Pattern Analyses

Significant differences in methods and study period obviate a direct, detailed comparison of the present results with those of Major et al. (1977b). However, a broad comparison of results can be made by examining the averages of mixing proportion estimates for month/sub-area strata from the two studies (Table 19).

Both studies found that chinook in the MS-BS, particularly in subareas 8 and 10, were predominantly of western Alaskan origin. However, our estimates for western Alaska in sub-area 6 in June and sub-area 4 in July averaged considerably higher than Major's et al. estimates (Table 19). Both studies also showed, in general, a decrease in proportions of Asian chinook and an increase in the proportions of western Alaskan chinook from west to east in the MS-BS.

Results from the two studies for the MS-PAC are quite dissimilar. Average estimates for both Asian and western Alaskan chinook in subareas 1, 3, 5, 7, and 9 are usually much lower in our study than in Major's et al. This is due, primarily, to the classification of an often large proportion of the MS-PAC scale samples to the central Alaska

category in the present study. Major's et al. (1977b) study did not include standards for regions other than Asia and western Alaska.

We also compared Knudsen's et al. (1983) results for 1980 with the present results. Estimates for MS-BS sub-areas were similar for both studies, but estimates for the MS-PAC, particularly for sub-area 5, were quite different. In general, for both age classes estimates for central Alaska were considerably higher and estimates for age 1.2 Asian chinook and age 1.3 southeast Alaska/British Columbia chinook were lower in the present study than in Knudsen's et al. (1983) study.

Differences in methods between the two studies make it difficult to determine the exact cause of these changes in the estimates for the MS-PAC. We suspect that the high estimates for age 1.3 southeast Alaska/British Columbia chinook in Knudsen's et al. study may be related to the selection in that study of the radius of the focus as the best character for distinguishing between central Alaska and southeast Alaska/British Columbia chinook in the 4-way analysis. This scale character was not used in the present study for the reason discussed in Methods, Section E.4. Changes in the predominant stock of age 1.2 chinook in sub-area 5 from Asia to central Alaska may be related to Knudsen's et al. (1983) use of more suspected non-preferred scales in both the Asia standard and high seas unknowns, than used in the present study. Myers (1983) and Walker and Davis (1983) reported that non-preferred area scales in the standards or unknowns can cause directional biases in mixing porportion estimates.

We think that the methods of the present study represent a considerable improvement over earlier techniques used by Major et al. (1977b) and Knudsen et al. (1983). Major's et al. (1977b) study was limited by several problems which to a large extent were overcome by the present study:

- 1) The North American standard included only western Alaskan and Canadian Yukon scales, yet it was used to classify fish in areas where other North American stocks are known to occur.
- 2) The North American standard was not constructed by weighting component stocks according to best estimates of abundance, and both standards and unknowns were pooled over age class and brood year.
- 3) The Asian standard consisted of maturing chinook sampled on the high seas west of 170°E, which may have included some North American fish.
- 4) The classification of 1966-72 high seas samples was considered provisional, in part because it was based on standards collected only in 1968.

Knudsen's et al. (1983) study was also limited by several problems that were eliminated or ameliorated by the present study:

- 1) Suspected non-preferred body area scales were included in both the standards and unknowns.
- 2) Questionable scale characters involving the radius of the focus and the plus growth zone (zone 2) were used.
- 3) The Asian standards did not include 1982 scale samples from the Kamchatka and Bolshaya rivers.
- 4) The Asian and central Alaskan standards were not weighted to reflect the relative abundances of the component stocks.

E. Comparison With Information From Tagging

Tag recovery information for the Bering Sea indicates the predominance of western Alaskan chinook, but also the presence of other North American stocks. Information for the North Pacific Ocean suggests a broader mixture of stocks from all major chinook production areas (Fig. 3 and Table 3). These same general conclusions can be drawn from the results of the present scale pattern analysis. Unfortunately, high seas tag releases of chinook are too sporadic and the number of recoveries is far too small to warrant quantitative use of the tagging data. Codedwire tag releases are regionally disproportionate, and represent, primarily, hatchery stocks from southeast Alaska, British Columbia, Washington, Oregon, and California. The lack of coded-wire tag recoveries from the mothership fishery, in light of the examination of 22,270 chinook for missing adipose fins in 1981-83, would suggest a low relative abundance of these southern stocks in the U.S. FCZ west of 175°E.

Tag recoveries demonstrate the presence of Washington-Oregon-California chinook in waters west of 155°W in both the Bering Sea and North Pacific Ocean. However, we chose not to include a standard for stocks originating south of the Fraser River in part because age 0. is the predominant freshwater age class of these southern stocks (Table 8 in Knudsen et al., 1983). Previous studies have shown that age 1. chinook from Washington, Oregon, and California are not present in these western waters in proportions detectable with current scale pattern analysis techniques (Knudsen et al. 1983; Myers 1983).

and the second of the second o

.

ے۔ ک

•

•

•

-

1

, ,

,

.

•

VII. ESTIMATES OF INTERCEPTIONS BY HIGH SEAS FISHERIES

A. Methods

Estimates of the annual catches of immature chinook salmon by region of origin for the mothership fishery were made by multiplying the catches by sub-area, month, year, and age (.2 and .3) by the corresponding mixing proportion estimates (age 1.2 for all .2 and age 1.3 for all .3) and then summing these for the total annual catch by region of origin (Table 20). When mixing proportion estimates were missing for the years 1975-1981, then the average (over years) composition for the corresponding age, sub-area and month was used. The annual catches of matures and the unallocated fish were prorated to the region of origin by the regional composition of the immature fish.

Unweighted average compositions were calculated for the years 1975-1977 and 1978-1981 for the Bering Sea (even-numbered sub-areas) and North Pacific (odd-numbered sub-areas). These stock compositions (Table 21) were then used to estimate the interceptions by the mothership fishery for the years prior to 1975 (1975-77 compositions) and after 1981 (1978-81 compositions) by multiplying the average proportions and the corresponding total annual chinook salmon catch in the Bering Sea and North Pacific.

The annual catches of chinook salmon by the landbased fleet have exceeded those by the mothership fleet since 1977 (except for 1980) and we felt it was important to allocate those catches to the region of origin to evaluate fully the potential impact of the high seas interceptions. Unfortunately, we had few direct estimates for the landbased area and the sample sizes were small (30-60); therefore, we decided to apply the North Pacific mothership compositions to the annual landbased catches. The scale analysis for the landbased driftnet fishery area indicated a preponderance of central Alaskan fish (about 70%) and nearly equal proportions of Asian and western Alaskan stocks, which was similar to the average composition in the North Pacific area of the mothership fishery. Catch statistics for the landbased fishery used in this report are from Fredin (1980), as official statistics for early years are in terms of weight only. The statistics for 1964-71 include relatively small catches by the landbased longline fishery, which operated in the same general waters as the LBDN fishery. Catches by the entire landbased fishery are considered, although the scale pattern analysis pertained only to the area east of 160°E, which accounts for the great majority of the total chinook catch.

The final step in our evaluation of the impact of high seas fishing on Alaskan salmon stocks was to estimate the annual runs (catch + escapement) to western Alaska and the annual age compositions of the runs. Annual estimates of the escapements of chinook salmon were available for the Nushagak and Togiak Districts of Bristol Bay from aerial surveys conducted by ADF&G. These estimates were added to the commercial

catches and estimated (by ADF&G) subsistence catches to estimate the annual runs. Only commercial catches were available for the other districts of Bristol Bay and the north side of the Alaska Peninsula. The annual runs for the other districts were estimated by dividing the catch by the rate of exploitation in the Nushagak district, which on the average was 0.54. The Nushagak runs accounted for 72% of the total estimated Bristol Bay runs (1965-1983). Estimated runs to the Yukon and Kuskokwim regions for 1975-1983 were provided by ADF&G (1976-83 estimates are in Table 9 in this report). For earlier years the Yukon runs were estimated by dividing the catch by an average rate of exploitation of 0.65, whereas the Kuskokwim region runs were estimated by dividing the catches by 0.45 (1970-1974) and by 0.40 (1965-1969). A commercial fishery was not developed in the Kuskokwim region until the 1960s and the low annual variation in the catches suggested that the fishery was managed conservatively, i.e., on almost a quota basis (McBride and Wilcock 1983), thus we used relatively low rates of exploitation to estimate the runs.

The high seas catches were mostly of immature age 1.2 chinook salmon that if not caught would have returned over the next 3 years at ages 1.3, 1.4 and 1.5. Age compositions from the western Alaska commercial fisheries (Table 11) were applied to the annual estimated runs to estimate the runs by age group and then the returns by brood year. Maturity schedules for the inshore returns of age 1.3 and older fish were then constructed and applied to the estimated high seas catches of western Alaska chinook to apportion the catches to the year of inshore run. A weighted (by run size) average maturity schedule for the three western Alaskan regions was used for apportioning the 1975-1980 high seas catches, whereas the maturity schedules for the Nushagak were used for other years.

There are obviously several sources of error in these methods of estimating annual abundance, e.g., estimates of escapements were often estimated from the catch and the age composition of the escapement was assumed to be the same as the catch; however, the estimates are probably the best available at present.

B. Results

Prior to our work, high seas catches had been reported to be from either Asian (mostly Kamchatka) or North American (entirely western Alaska) stocks by Fredin (1980) and Dahlberg (1980 and 1981). Our estimates of the interceptions of western Alaska chinook salmon by the mothership fishery were similar to prior estimates, e.g., our estimates of the average catch of western Alaska chinook was 164,000 (1964-1980) whereas the prior estimates averaged 179,000 (Table 22); however, our estimates of the interceptions of Asian stocks averaged less than one-half of the prior estimates. Central Alaskan stocks have apparently contributed almost as many chinook salmon to the mothership fishery as have western Alaskan stocks in recent years. They have apparently

contributed the majority of the chinook salmon to the landbased fishery. Earlier estimates had assigned all landbased catches to Asian stocks.

The extent of the contribution of central Alaskan chinook salmon to the high seas fisheries was an unexpected result because the commercial catches in central Alaska are so much lower than the catches in western Alaska and Asia (Table 23). The estimates of the high seas catches of central Alaskan chinook salmon were over four times greater than the inshore commercial catches during 1964-1977 and over two times greater during the period of reduced high seas fishing in 1978-1983. Annual estimates of total chinook salmon abundance (catch plus escapement) in central Alaska are, unfortunately, not available. Commercial fishing for chinook salmon is greatly restricted in Cook Inlet which is the major production area in the region, so the catches undoubtedly underestimate the relative abundance. Without reasonable estimates of total stock abundance it is not possible to estimate the high seas exploitation rate of central Alaskan stocks, but our results would suggest a substantial level of exploitation.

Estimates of the high seas catches of chinook salmon originating in southeast Alaska/British Columbia were negligible until 1978 and although they have increased in recent years (because a higher proportion of the catch has come from the North Pacific) the interceptions are still low compared to the commercial catches. However the high seas interceptions since 1978 may be as much as 10% of the stock originating in southeast Alaska/British Columbia, as the catch in that area, which comes mainly from the large troll fishery, includes a high proportion of chinook salmon originating from southern stocks (Washington-California).

The Nushagak, Kuskokwim and Yukon Rivers combined probably produce more chinook salmon than the rest of the Alaskan rivers combined. Total stock abundance in Kamchatka is unknown, but from the size of the rivers there compared to those in western Alaska, it seems likely that the western Alaskan chinook salmon stocks are more than twice as abundant. So it would be expected that the western Alaskan stocks would contribute most heavily to the high seas fisheries, particularly in the Bering Sea.

Estimates of the annual inshore runs (commercial and subsistence catches plus escapement estimates) to western Alaska, the apportioned (to year of return) high seas catches (interceptions), and the annual combined runs (inshore runs plus high seas catches) for 1965-1983 are given in Table 24. We estimate that during the period 1965-1977 the high seas fisheries caught an average of 26% of the combined runs (42% was domestic catch and 32% was escapement), but since 1978 they have taken an average of 14% (23% of the 1982 run and 11-15% of the other runs). No significant linear correlation was evident between the high seas catches and the inshore runs. Small catches were associated with above average runs but large catches were associated with both small and large runs. The increase in the western Alaskan chinook salmon runs beginning in 1978 coincided with an increase in the abundance of all

species of salmon in western and central Alaska and does not appear to be attributable solely to a reduction in high seas catches. However, if there were no high seas catches, the inshore catches since 1978 might have been increased by 19%, assuming that the inshore rate of exploitation was unchanged (inshore rate of exploitation has actually decreased slightly with increasing run size during 1975-1983) and that high seas drop-out mortalities equalled natural mortalities.

The impact of the high seas fisheries on the individual stocks within western Alaska is difficult to determine aside from the fact that the estimates of the inshore stock abundances are rather imprecise. Our estimates of the (weighted mean) river stock composition in the mothership fishery from scale pattern analysis indicated that the Yukon stock made up about 46% of the western Alaska component during 1975-1977 and 64% during 1978-1981. In contrast the Bristol Bay (predominantly Nushagak) stock made up only 26% of the western Alaska component during 1975-1977 and only 9% during 1978-1981. However, judging by the estimates of the inshore runs, one would expect the Bristol Bay stock to be the most abundant western Alaskan stock in the mothership fishery. This may indicate differences in high seas distribution of western Alaskan stocks or inaccurate estimates of their inshore runs.

Escapement-return statistics for the Nushagak River stock were calculated from catch, escapement and catch age-composition data provided by ADF&G (Table 25). There was some correlation between the returns of total ages 5-7 and the CPUE (primarily age 4) in sub-areas 8 and 10 through the 1970 brood year (r = .58); however, after the 1970 brood year, when the relative production (R/E) increased and high seas catches decreased, the correlation between CPUE and returns disappeared. There is little evidence that the high seas fishery has had a significant impact on the Nushagak chinook salmon returns from the brood years since 1971, with the possible exception of the returns from the 1976 brood. The high seas CPUE was very high but the returns were relatively low. However, a lower return might be expected from the 1976 brood year because the escapement was so large. Returns to date from the 1978 brood year, with a similar large escapement, have been relatively poor.

A reduction in high seas catches of chinook salmon in the Bering Sea (sub-areas 8 and 10), although of some benefit to the coastal fisheries in western Alaska, would require a substantial reduction in the catches of chum and pink salmon. In July, sub-areas 8 and 10 have historically contained the highest relative abundance and provided the largest catches of chum salmon to the mothership fishery (Tables 26 and 27). In recent years, chum salmon catches (as well as the catches of other species) have been higher in sub-area 5 than in the Bering Sea, but the CPUE for chum salmon in sub-area 5 is considerably lower. In contrast, the CPUE for sockeye salmon (many of which are of Bristol Bay origin) is much higher in sub-area 5 than in the Bering Sea. Thus a simple shift in fishing effort from the Bering Sea to sub-area 5 may not be of benefit to western Alaska fishermen. Such a shift would probably increase the high seas catches of Bristol Bay sockeye and central Alaska chinook salmon.

VIII. OVERALL SUMMARY AND CONCLUSIONS

- 1. Previous information from tagging studies (Fig. 3 and Table 3) and scale pattern analyses of 1966-72 Japanese mothership and research vessel samples (Major et al. 1977b) indicate that chinook salmon caught in the central and western Bering Sea are primarily of western Alaskan origin.
- 2. Tag recoveries suggest a more diverse mixture of regional chinook salmon stocks in the North Pacific Ocean west of 155°W (East Kamchatka, western Alaska, central Alaska, British Columbia, Idaho, and coastal Oregon). However, previous scale pattern analyses classified high seas unknowns to only two regional categories: Asia and western Alaska.
- 3. The present study was an attempt to update and refine estimates of the incidence of various major regional stocks of chinook salmon in the area of the Japanese mothership and landbased driftnet (LBDN) salmon fisheries. The study entailed linear discriminant analysis of growth patterns of scales from ages 1.2 and 1.3 immature chinook salmon sampled in the area 40°-62°N, 160°E-175°W in 1975-81. The analysis employed inshore standard samples representing the regional stocks Asia, western Alaska (including the Canadian Yukon), central Alaska, and southeast Alaska/British Columbia, and western Alaskan "river" stocks Yukon, Kuskokwim and Bristol Bay. Analyses employing the three western Alaska "river" standards were done when western Alaska was found to be the predominant regional stock group in a time/area stratum.
- 4. Age and maturity composition of the 1975-81 high seas commercial catches was estimated by applying age/maturity compositions determined from the available high seas samples to the reported catches, by sub-area/month strata. Immature age 1.2 fish comprised the main age/maturity group in the 1975-81 mothership (mean 84.9%) and LBDN (mean 78.3%) chinook catches, and immature age 1.3 fish made up the second most abundant group (Appendix Tables Al-A7 and Bl-B7). The majority (mean 82.0%) of the mothership catch of maturing chinook salmon is made in June.
- 5. Descriptive statistics of four basic scale characters showed some consistent differences in scale patterns among the four regional chinook stocks (Appendix Figs. 1-7). For all brood years the scales of Asian fish always had the smallest mean size of zone 1 (1st year: freshwater growth) and zones 2+3 (2nd year: freshwater "plus" growth, if present, and 1st year of ocean growth), southeast Alaska/British Columbia usually had the largest mean size and number of circuli in zone 1, western Alaska consistently had the largest zones 2+3. Measurements for central Alaska scales were intermediate between those for Asia and southeast Alaska/British Columbia.

- 6. Classification accuracies achieved in the discriminant analyses (Appendix Tables C1-C7 and D1-D7) were highest for the Asian, western Alaska, and southeast Alaska/British Columbia standards (average over 70% in the 4-way regional analyses) and were lower for the central Alaska standards (average 60% in the 4-way regional analyses). Central Alaska misclassified towards all other regions, and errors were often highest towards southeast Alaska/British Columbia.
- 7. In the "river" analyses the western Alaska stocks misclassified primarily to each other (Appendix Tables C1-C7 and D1-D7). Classification accuracies were highest for Yukon and Bristol Bay (average 60% in the 6-way analyses) and were much lower for Kuskokwim (average 48% in the 6-way analyses).
- (8) Western Alaska was the predominant regional stock of immature ages 1.2 and 1.3 chinook in the central and western Bering Sea (Figs. 8 and 12), and Asia was the next most abundant regional stock group (Figs. 7 and 11). Stock composition estimates for Asia and western Alaska in the Bering Sea appear to be inversely related (i.e., when estimates for western Alaska were high, estimates for Asia were low and vice versa).
- 9. Spatial and temporal trends in the proportions of immature age 1.2 western Alaskan and Asian chinook in the Bering Sea were also opposite (Figs. 7 and 8). In general, proportions of western Alaskan chinook increased from west to east and decreased from June to July. Conversely, proportions of Asian chinook usually increased from east to west and from June to July.
- In terms of relative abundance, Yukon appears to be the overwhelm-ingly predominant western Alaska stock in the Bering Sea, followed by Kuskokwim, and, lastly, Bristol Bay (Figs. 8 and 12). Considerable year-to-year variability in the proportions of Yukon, Kuskokwim, and Bristol Bay chinook was found to occur in sub-area 10.
- Central Alaskan chinook also appear to be present in the Bering Sea, although they are usually less abundant than Asian chinook (Figs. 7, 9, 11, and 13); and southeast Alaska/British Columbia chinook were detected only in very low relative abundances (Figs. 10 and 14).
- 12. Stock composition estimates indicate a broader mixture of stocks and more diversity of stock composition between the two ocean age classes in the North Pacific Ocean than in the Bering Sea (Figs. 7-14).
- The most unexpected result of our scale pattern analysis was the predominance of immature age 1.2 chinook of central Alaskan origin

in the North Pacific Ocean. Central Alaskan chinook predominated in both the North Pacific mothership and LBDN fishery areas in a majority of the month/sub-area strata (Fig. 9).

- 14. The next most abundant stock groups of immature age 1.2 chinook in the North Pacific Ocean were western Alaska and Asia. The south-east Alaska/British Columbia group, though more abundant than in the Bering Sea, was still usually detected only in very low relative abundance.
- 15. Another unforseen result was that in the North Pacific mothership fishery area in July, proportions of immature age 1.2 Asian fish tend to increase from west to east and proportions of central Alaskan chinook tend to increase from east to west (Figs. 7 and 9). There appears to be a westward shift from June to July in the distribution of immature age 1.2 central Alaskan chinook in this area.
- 16. For immature age 1.3 chinook, the predominance of all regional stocks except southeast Alaska/British Columbia in at least one month/sub-area stratum the North Pacific mothership area indicates a diverse mixture of stocks of this maturity/age group (Figs. 11-14).
- Central Alaska followed by Asia were the predominant stock groups of immature ages 1.2 and 1.3 chinook in the LBDN; western Alaska was also present; and southeast Alaska/British Columbia was, again, only present in very low relative abundance (Figs. 7 to 14). However, the paucity of samples from this fishery area make it difficult to draw any firm conclusions about stock origins of chinook in the LBDN.
- 18. The overall pattern of the stock composition estimates shows decreasing abundance of western Alaskan fish southward from the Bering Sea to the LBDN area, and a reverse trend for fish of central Alaskan origin. Asian chinook are an important secondary stock in all fishery areas. Chinook of southeast Alaskan/British Columbia origin are usually present only in low relative abundances.
- 19. The results of our scale pattern analysis for the Bering Sea mothership area compare well with the results of previous scale pattern studies (Major et al. 1977b; Knudsen et al. 1983). However, our results for the North Pacific mothership area are quite different. We attribute these differences primarily to variations in procedures, and we believe that the methods used in the present study are the best application of scale pattern techniques to high seas chinook samples to date. Our results are generally corroborated by tag recovery information.

- 20. Previous studies (Fredin 1980; Dahlberg 1980 and 1981) apportioned high seas catches to only two categories: Asia (mostly Kamchatka) or North American (entirely western Alaska), and assigned all landbased driftnet catches to Asian stocks.
- 21. Our estimates of the interceptions of western Alaskan chinook salmon by the mothership fishery were similar to prior estimates. However, our estimates of the interceptions of Asian chinook salmon by the mothership fishery averaged less than one-half of the prior estimates (Table 22).
- Our estimates of the interceptions of central Alaska chinook salmon indicate that in recent years they have contributed almost as many fish to the mothership fishery as have western Alaska stocks. In addition, central Alaska has apparently often contributed the majority of chinook salmon to the landbased fishery (Table 22).
- Our estimates of the high seas catches of central Alaska chinook salmon were over four times greater than the inshore commercial catches during 1964-77 and over two times greater during the period of reduced high seas fishing in 1978-83 (Table 23). Because reliable estimates of total chinook salmon abundance (catch plus escapement) in central Alaska are not available, we were not able to estimate the high seas exploitation rate of central Alaskan stocks. Commercial catches probably underestimate the abundance of central Alaskan chinook relative to Asian and western Alaskan chinook stocks. We believe, however, that the level of high seas exploitation of central Alaskan chinook stocks is probably substantial.
- 24. High seas interceptions of freshwater age 1. southeast Alaska/
 British Columbia chinook were negligible until 1978, but (due to
 increased fishing effort in the North Pacific) they have increased
 in recent years (Table 23). Commercial catches overestimate the
 relative abundance of southeast Alaska/British Columbia stocks
 since they include many troll-caught fish of non-local origin. We
 suspect that high seas interceptions since 1978 may be as much as
 10% of the stock originating in southeast Alaska and British
 Columbia.
- 25. During the period 1965-1977 the high seas fisheries caught an average of 26% of the combined western Alaska runs (i.e., Yukon, Kuskokwim and Bristol Bay runs and estimated high seas catch); and since 1978 they have taken an average of 14% (Table 24). No significant linear correlation was evident between the high seas catches and the inshore runs to western Alaska. However, if there were no high seas catches, the inshore catches since 1978 might have been increased by 19%, if the inshore rate of exploitation

were unchanged and if non-catch fishing mortality about equals natural ocean mortality of age 1.2 and older fish.

- Although a reduction in high seas catches of chinook salmon in the Bering Sea (sub-areas 8 and 10) would be of some benefit to the coastal fisheries in western Alaska, closure of these areas would likely mean a substantial reduction in high seas catches of chum and pink salmon (Table 26). A shift of high seas fishing effort from the Bering Sea to the North Pacific (sub-area 5) would probably result in increased catches of Bristol Bay sockeye and central Alaskan chinook.
- 27. We believe that scale pattern analysis is the best technique presently available to determine regional stock composition of chinook salmon in offshore waters. While we chose what seemed to be the most appropriate applications of the technique given the limitations we faced, there is nevertheless considerable room for improving the overall methodology and information base required for interpretation and application of the results:
 - a) There is need for improvement in the quality and quantity of the scale samples themselves. Ideally, fisheries agencies should collect scale samples that represent all major sub-stocks in the catches and escapements of major chinook salmon runs. There is also need for world-wide standardization of scale sampling techniques, particularly so that all scales are taken from the same body area of the fish.
 - b) Additional work should be done on various technical aspects such as interpretation of scale growth patterns, identification of preferred (body) zone scales, determination of the effects of using non-preferred area scales in such analyses, and the effects of scale character selection on the results of discriminant analyses. These subjects are being addressed in on-going research at FRI.
 - c) The method of constructing standard samples could have a considerable effect on the results of discriminant analysis, yet it has not been thoroughly examined in any recent applications to our knowledge. Some of the estimates of relative abundance of component stocks in our standard categories were known to be of questionable reliability, and perhaps resulted in inappropriate weighting factors. For instance, our western Alaska standard heavily weighted Nushagak River, yet the Yukon and/or Kuskokwim runs could be considerably larger than the run size indices available. The possible biases and misclassification errors attributable to use of standards that weight component stocks differently than actual relative abundances could be the subject of a large simulation study.

d) The quality of data on inshore run size and age composition should be greatly improved, to permit a thorough and unequivocal assessment of the effects of the high seas fishery on various regional stocks. Our interpretations of the effect of the mothership and landbased fisheries on western Alaskan chinook runs was necessarily based on rough estimates of run size for several major stocks (i.e., all but Nushagak) and readily applicable age composition data were available only for highly selective gillnet catches. We had no basis for deriving even rough estimates of run size for Asia and central Alaska. It is virtually impossible to assess definitively the impact of an intercepting fishery on a particular stock unless detailed data are available on size and age composition of all major components of catch and escapement.

IX. LITERATURE CITED

- Alaska Department of Fish and Game. 1981. Proposed management plan for Southeast Alaska chinook salmon runs in 1981. S.E. Region Fish. Management Divisions. 31 pp.
- Bristol Bay area 1981. 175 pp.
 - . 1982b. 1982 cumulative Alaska commercial salmon catch by management area, date and species (Preliminary data). ADF&G, Div. Comm. Fish., Juneau, compiled 28 Oct. 1982.
- . 1982c. Preliminary forecasts and projections for 1982 Alaskan salmon fisheries. ADF&G Info. Lflt. No. 197. 39 pp.
- Bristol Bay area 1982. 213 pp.
- Bohn, B.R. and H.E. Jensen. 1971. Investigation of scale patterns as a means of identifying races of spring chinook salmon in the Columbia River. Oregon Fish. Comm., Res. Rep. 3:28-36.
- Brown, M.B., L. Engelman, J.W. Frane, M.A. Hill, R.I. Jennrich, and J.D. Toporek. 1983. BMDP statistical software. University California Press, Berkeley. 733 pp.
- Cook, R.C. 1981. Information concerning the management needs of the Southeast Alaska troll fishery for chinook salmon. Unpubl. report prepared for Pacific Fisheries Foundation. 42 pp.
- . 1982. Estimating the mixing proportion of salmonids with scale pattern recognition applied to sockeye salmon (Oncorhynchus nerka) in and around the Japanese landbased driftnet fishery.

 Ph.D. Dissertation, University of Washington, Seattle. 264 pp.
- . 1983. Simulation and application of stock composition estimators. Can. J. Fish. Aquat. Sci. 40(12):2113-2118.
- Dahlberg, M.L. 1980. Catches of sockeye salmon of Bristol Bay origin, 1978 and 1979 and chinook salmon of western Alaska origin by the Japanese mothership salmon fishery, 1956-1979. (Document submitted to annual meeting of the INPFC, Anchorage, U.S.A., November 1980). 12 pp. Northwest and Alaska Fisheries Center, Natl. Mar. Fish. Serv., Natl. Oceanic Atmos. Admin., Auke Bay Laboratory, Auke Bay, Alaska.

- . 1981. Catch and effort of the Japanese mothership salmon fishery and estimated interceptions of western Alaska salmon in 1980. (Document submitted to annual meeting of the INPFC, Vancouver, Canada, November 1981). 15 pp. Northwest and Alaska Fisheries Center, Natl. Mar. Fish. Serv., Natl. Oceanic Atmos. Admin., Auke Bay Laboratory, Auke Bay, Alaska.
- . 1982. Report of incidence of coded-wire tagged salmonids in catches of foreign commercial and research vessels operating in the North Pacific Ocean and Bering Sea in 1981-1982. (Document submitted to annual meeting of the International North Pacific Fisheries Commission, Tokyo, Japan, November 1981). 11 pp. Northwest and Alaska Fisheries Center, Natl. Mar. Fish. Serv., Natl. Oceanic Atmos. Admin., Auke Bay Laboratory, Auke Bay, Alaska.
- Department of Fisheries and Oceans Canada. (1979-1982). British Columbia catch statistics by area and type of gear (as reported on sales slips received by the Department). DFO, Fisheries Management Pacific Region, Vancouver, B.C.
- Fraser, F.J., P.J. Starr, and A.Y. Fedorenko. 1982. A review of the chinook and coho salmon of the Fraser River. Can. Tech. Rep. Fish. and Aquat. Sci., 1126:130 pp.

3

- Fredin, R.A. 1980. Trends in North Pacific salmon fisheries. pp. 59-119 in: McNeil, W.J. and D.C. Himsworth, eds. Salmonid ecosystems of the North Pacific. Oregon State Univ. Press and Oregon State Univ. Sea Grant College Program. Corvallis, Oregon.
- Fredin, R.A. and D.D. Worlund. 1974. Catches of sockeye salmon of Bristol Bay origin by the Japanese mothership salmon fishery 1956-70. Int. N. Pac. Fish. Comm., Bull. 30. 1-80 pp.
- Fredin, R.A., R.L. Major, R.G. Bakkala, and G.K. Tanonaka. 1977.

 Pacific salmon and the high seas salmon fisheries of Japan.

 Northwest and Alaska Fisheries Center, Natl. Mar. Fish. Serv.,

 Processed Report. 324 pp.
- Fukuhara, F.M. 1971. An analysis of the biological and catch statistics of the Japanese mothership salmon fishery. Ph.D. Dissertation, University of Washington, Seattle. 238 pp.
- Gilbert, C.H. 1912. Age at maturity of the Pacific coast salmon of the genus Oncorhynchus. U.S. Bureau Fish., Bull. 32:1-22.

- Harris, C.K., R.C. Cook, S.L. Marshall, R.H. Conrad, R.L. Burgner, and J P. Graybill. 1980. High seas salmon studies. Pp. 8-10 in: Beall, D.D., ed. 1979 Research in fisheries. Ann. Rep. of the College of Fisheries, Contr. 515. University of Washington, Seattle.
- Holland, J., B. Bachen, G. Freitag, P. Kissner, and A. Wertheimer. 1983. Chinook salmon plan for Southeast Alaska. (A species specific adjunct to the S.E. Regional Comprehensive Salmon Plan.) Unpubl. manuscript. 62 pp.
- International North Pacific Fisheries Commission. 1958. Selection of scales for racial studies. In: Proc. 1957 Ann. Mtng., p. 2.
- Sub-Committee on Salmon. In: Proc. 1980 Ann. Mtng. 103-137 pp.
- Ito, J. 1983. Chronological change of fishing effort, abundance of chinook salmon in the Bering Sea and corresponding coastal catch. (Document submitted to Sub-Committee on Salmon, annual meeting of International North Pacific Fisheries Commission, Anchorage, Alaska, November 1983). 12 pp., with English transl.
- Ito, J. and K. Takagi. 1981. Biological information on chinook salmon in the Bering Sea. (Document submitted to the International North Pacific Fisheries Commission). 20 pp. Fisheries Agency of Japan, Tokyo, Japan 100.
- Japan Fisheries Agency. 1981. Release data for Japanese salmon tagging experiments in 1981 (May to August) and recovery data up to 1981 August. (Document submitted to annual meeting of the International North Pacific Fisheries Commission). 10 pp. Japan Fisheries Agency, Tokyo, Japan 100.
- . 1981. The regulations on the operations of the Japanese high seas salmon fisheries for the 1980 fishing season (Provisional English translation). (Document submitted to annual meeting of the International North Pacific Fisheries Commission). 25 pp. Japan Fisheries Agency, Tokyo, Japan 100.
- Johnson, J. K. 1984. Pacific salmonid coded wire tag releases through 1983. Manuscript report produced by Regional Mark Processing Center, Pacific Marine Fisheries Commission. Portland, Oregon. 203 pp.
- Kissner, P.D. 1973. A study of chinook salmon in Southeast Alaska. ADF&G, Sport Fish. Div., Fed. Aid Fish. Rest., Anadr. Fish Studies, 1 July 1973 to 30 June 1974, Project AFS-41-2. 30 pp.

- . 1983. A study of chinook salmon in Southeast Alaska.

 ADF&G, Sport Fish. Div., Fed. Aid Fish. Rest., Anadr. Fish
 Studies, Vol. 23, 1 July 1981 30 June 1982, Project AFS 41-10.
 53 pp.
- Knudsen, C.M., C.K. Harris, and N.D. Davis. 1983. Origins of chinook salmon in the area of the Japanese mothership and landbased driftnet salmon fisheries in 1980. (Document submitted to annual meeting of the INPFC, Anchorage, U.S.A., November 1983). 71 pp. Univeristy of Washington, Fisheries Research Institute, FRI-UW-8315. Seattle.
- Koo, T.S.Y. 1962. Age designation in salmon. Univ. of Washington, Publ. Fish., New Ser. 1:41-48.
- Koo, T.S.Y. and A. Isarankura. 1967. Objective studies of scales of Columbia River chinook salmon, Oncorhynchus tshawytscha (Walbaum). Fish. Bull., 66(2):165-179.
- Major, R.L. 1982. Yield loss of western Alaska chinook salmon resulting from the large Japanese mothership catch of 1980. (Document submitted to the annual meeting of the INPFC, Tokyo, Japan, November 1982). 27 pp. U.S. Dept. Comm., Natl. Oceanic Atmos. Admin., Natl. Mar. Fish. Serv., Northwest and Alaska Fisheries Center, 2725 Montlake Blvd. E., Seattle WA 98112.
- Major, R.L., S. Murai, and J. Lyons. 1975. Scale studies to identify Asian and Western Alaskan chinook salmon. Int. N. Pac. Fish. Comm., Annual Rep. 1973. 80-97 pp.
- . 1977a. Scale studies to identify
 Asian and Western Alaskan chinook salmon: the 1969 and 1970
 Japanese mothership samples. Int. N. Pac. Fish. Comm., Annual
 Rep. 1974. 78-81 pp.
- Asian and Western Alaskan chinook salmon. Int. N. Pac. Fish. Comm., Annual Rep. 1975. 68-71 pp.
- Major, R.L., J. Ito, S. Ito, and H. Godfrey. 1978. Distribution and origin of chinook salmon (Oncorhynchus tshawytscha) in offshore waters of the North Pacific Ocean. Int. N. Pac. Fish. Comm., Bull. 38. 54 pp.
- Manzer, J.I., T. Ishida, A.E. Peterson, and M.G. Hanavan. 1965. Salmon of the North Pacific Ocean, Part V: Offshore distribution of salmon. Int. N. Pac. Fish. Comm., Bull. 15. 452 pp.

- McBride, D.N. and J.A. Wilcock. 1983. Alaska chinook salmon (Oncorhynchus tshawytscha Walbaum) catch and escapement 1961-1980, with age, size, and sex composition estimates. ADF&G Info. Lflt. No. 212. 181 pp.
- Meacham, C.P. 1980. Summary of Western Alaska chinook salmon catch and escapement data. (Document submitted to annual meeting of the INPFC, Anchorage, U.S.A., November 1980). 20 pp. Alaska Dept. Fish and Game, Commercial Fish. Div., 333 Raspberry Rd., Anchorage AK 99502.
- Mills, M.J. 1982. Alaska statewide sport fish harvest studies 1981 data. ADF&G, Sport Fish. Div., Fed. Aid Fish. Rest., Anadr. Fish Studies, Ann. Rep. of Progress 1981-82, Project F-9-13,22 (SW-I-A). 115 pp.
- Myers, K.W. 1983. Determination of stock origins of chinook salmon incidentally caught in foreign trawls in the Alaska FCZ. (Document submitted to annual meeting of the INPFC, Anchorage, U.S.A., November 1983) 147 pp. University of Washington, Fisheries Research Institute. Seattle.
- Pella, J.J. and T.L. Robertson. 1979. Assessment of composition of stock mixtures. Fish. Bull., 77(2):387-398.
- Rich, W.H. 1920. Early life history and seaward migration of chinook salmon in the Columbia and Sacramento Rivers. U.S. Bureau Fish., Bull. 37:1-73.
- Rogers, D.E., K.J. Bruya, K.W. Myers, and T. Nishida. 1982. Origins of chinook salmon in the area of the Japanese mothership salmon fishery. Ann. Rep., July 1982 June 1983, Contract No. 83-0022, Alaska Dept. Fish and Game. Fisheries Research Institute, Univ. Washington, UW-FRI-8311, 146 pp. Seattle.
- Tanaka, S., M.P. Shepard, and H.T. Bilton. 1969. Origin of chum salmon (Oncorhynchus keta) in offshore waters of the North Pacific in 1956-1958 as determined from scale studies. Int. N. Pac. Fish. Comm., Bull. 26:57-155.
- Utter, F.M. 1978. Genetic variants of proteins in chum and chinook salmon from the Bering Sea and the Yukon and Kuskokwim Rivers: Report of analyses of 1976 collections. Unpubl. rep. to REFM Div., Northwest and Alaska Fish. Centr., Natl. Mar. Fish. Serv., Seattle.

- Utter, F.M., G. Milner, and D. Teel. 1979. Genetic variants of proteins in chum and chinook salmon from the Bering Sea: II Analyses of 1978 collections and additional data from Asian populations. (Document submitted to annual meeting of the INPFC, Tokyo, Japan, October 1979). 11 pp. Northwest and Alaska Fish. Centr., Natl. Mar. Fish. Serv., Natl. Oceanic Atmos. Admin., Seattle.
- Walker, R.V. and N.D. Davis. 1983. The continent of origin of coho salmon in the Japanese landbased driftnet fishery area in 1981. (Document submitted to annual meeting of the INPFC, Anchorage, U.S.A., November 1983) 48 pp. University of Washington, Fisheries Research Institute, FRI-UW-8314. Seattle.
- Wertheimer, A.C. and M.L. Dahlberg. 1983. Report on incidence of coded-tagged salmonids in catches of foreign commercial and research vessels operating in the North Pacific Ocean and Bering Sea during 1982-1983. (Document submitted to annual meeting of the International North Pacific Fisheries Commission, Anchorage, Alaska, November 1983). 14 pp. Northwest and Alaska Fish. Cent., Natl. Mar. Fish. Serv., Natl. Oceanic Atmos. Admin., Auke Bay Laboratory, Auke Bay, Alaska.
- Wilcock, J.A. and D.N. McBride. 1983. Origins of chinook salmon (Oncorhynchus tshawytscha Walbaum) in the Yukon River fisheries. ADF&G Info. Lflt. No. 226. 36 pp.
- Winer, B.J. 1971. Statistical principles in experimental design.

 McGraw-Hill Book Co., New York. 907 pp.

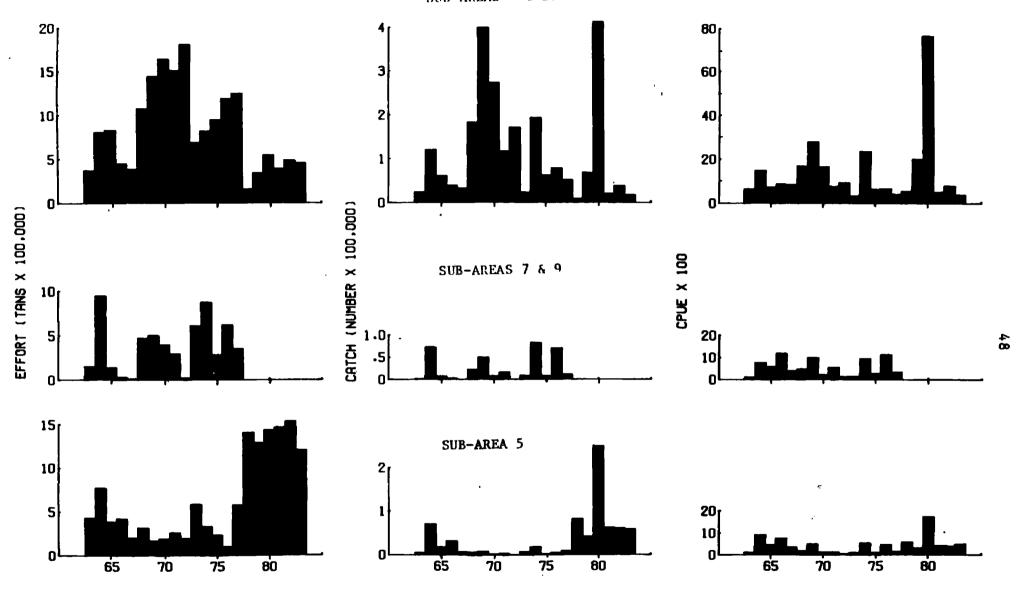


Fig. 2. Fishing effort, catch and catch-per-unit-of-effort (CPUE) of chinook salmon for the Japanese mothership salmon fishery during June 21 - July 31, 1963-83, by sub-areas.

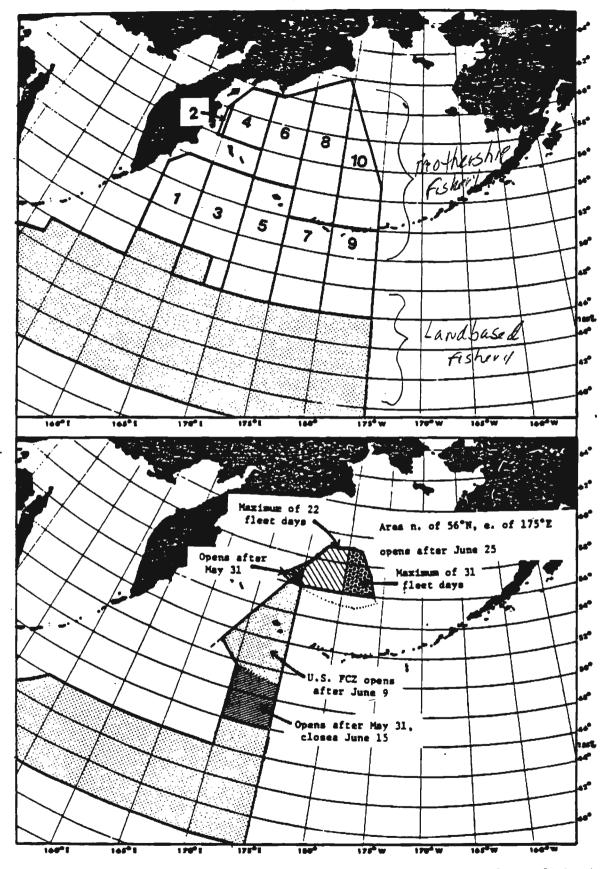


Fig. 1. Areas fished by the Japanese mothership and landbased driftnet fisheries in 1959-76 (upper panel) and 1978-present (lower panel). The landbased driftnet area is the lightly stippled area mostly south of 46°N. The early mothership area shows the statistical sub-areas delineated by Fredin and Worlund (1974), and the recent mothership area shows the time/area restrictions under the Japan-Soviet Fisheries Commission and the INPFC.

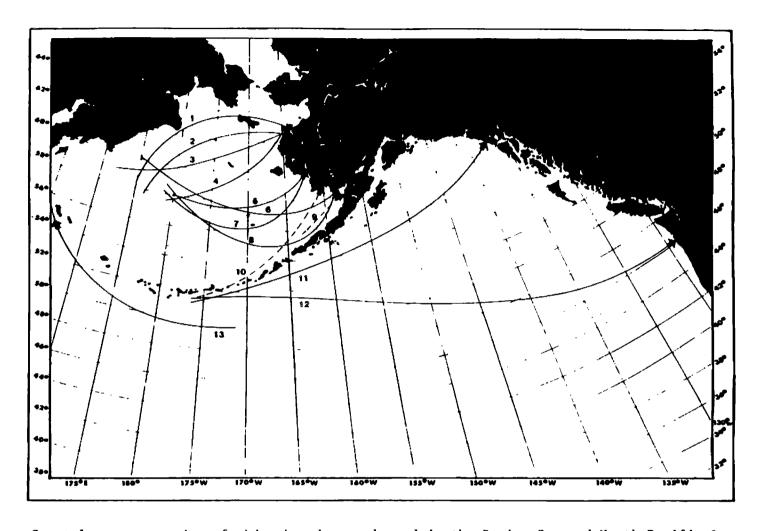


Fig. 3. Coastal tag recoveries of chinook salmon released in the Bering Sea and North Pacific Ocean (W of 155°W) 1956 to 1982. Dashed lines indicate maturing fish, solid lines denote immature fish at the time of release. Recovery details are as follows: individual recovery number, indicated by the arrows on this figure, (n); month and day of release (m/d:); ocean age at release and recovery, if known (release age - recovery age). (1) 7/18: no ages; (2) 7/04: .2-.3; (3) 7/18: .3-.5; (4) 6/18: no ages; (5) 7/30: .2-.4; (6) 7/19: .2-.4; (7) 6/19: .2-.4; (8) 6/20: .3-?; (9) 6/24: .3-.3; (10) 6/09: .3-.3; (11) 7/19: .2-.3; (12) 8/11: no ages; (13) 8/11: .2-.3; fish recovered in Kamchatka River.

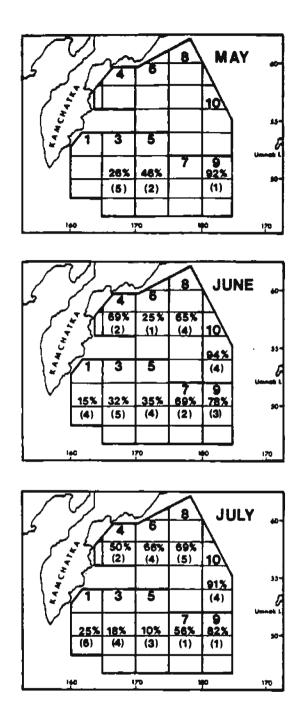


Fig. 4. Summarized results of Major's et al. (1977b) chinook scale pattern study. Percent figures are mean (corrected) estimates of proportion of western Alaska chinook in the population. Large bold-faced numbers indicate the sub-area, and the numbers in parentheses indicate the number of estimates (i.e., years in the period 1966-1972) forming the mean.

Fig. 5. Age 1.4 chinook salmon scale from the Kamchatka River, U.S.S.R. (6/16/80) showing the measurement axis and life history zones measured for the scale pattern analysis. Measurement axis = perpendicular to sculptured field; Zone 1 = distance from center of focus to outer edge of last circulus in freshwater annulus; Zone 2 = distance from outer edge of last circulus in freshwater annulus to outer edge of last freshwater circulus; Zone 3 = distance from the outer edge of the last freshwater circulus to the outer edge of the last circulus in the first ocean annulus.

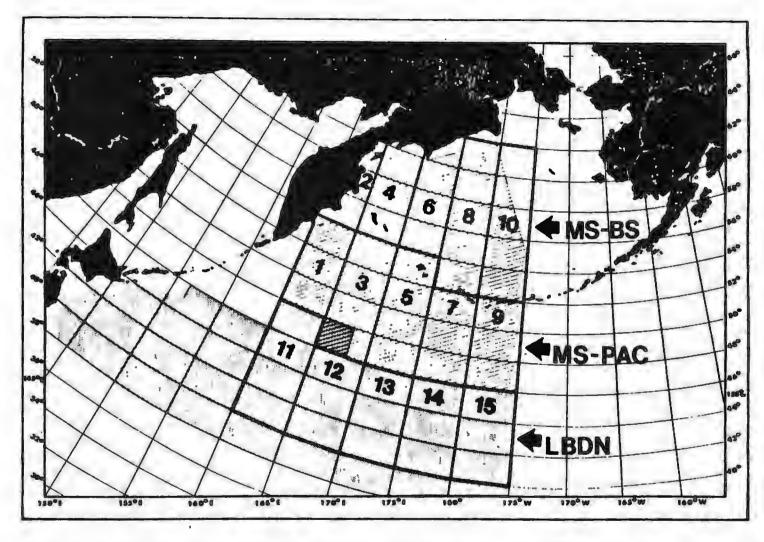


Fig. 6. Bold lines mark the study area for chinook scale analysis, stratified into three regions (MS-BS = mothership fishery in Bering Sea; MS-PAC = mothership fishery in North Pacific; LBDN = landbased driftnet fishery), 15 50-longitude sub-areas, and INPFC 20-latitude x 50-longitude statistical areas. INPFC statistical areas are coded such that the first 2 digits code the west-boundary longitude and the second 2 digits code the south-boundary latitude (e.g., area E7050 has 170°E, 50°N at the SW corner).

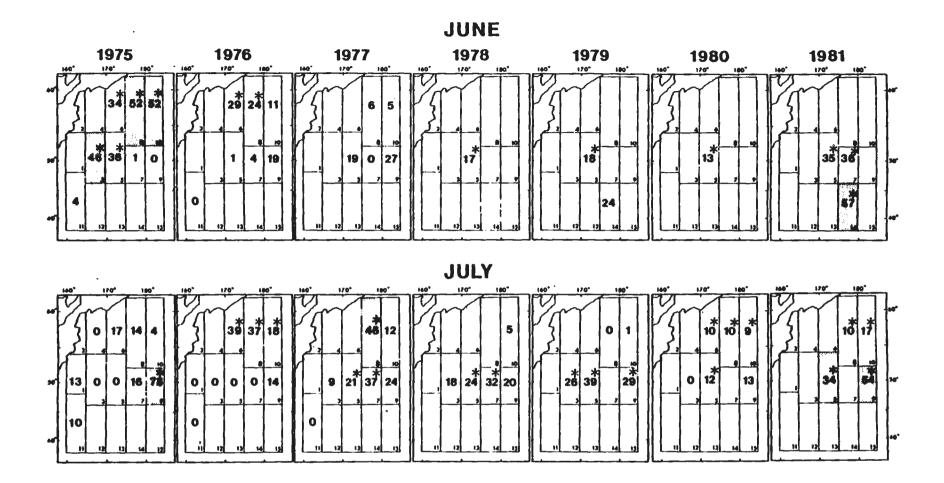


Fig. 7. Mixing proportion estimates (%) by sub-area and month (1975-81) for immature age 1.2 chinook salmon of Asian origin. Shading indicates strata where Asia was the predominant regional stock.
 * = statistically significant estimate (α = 0.10).

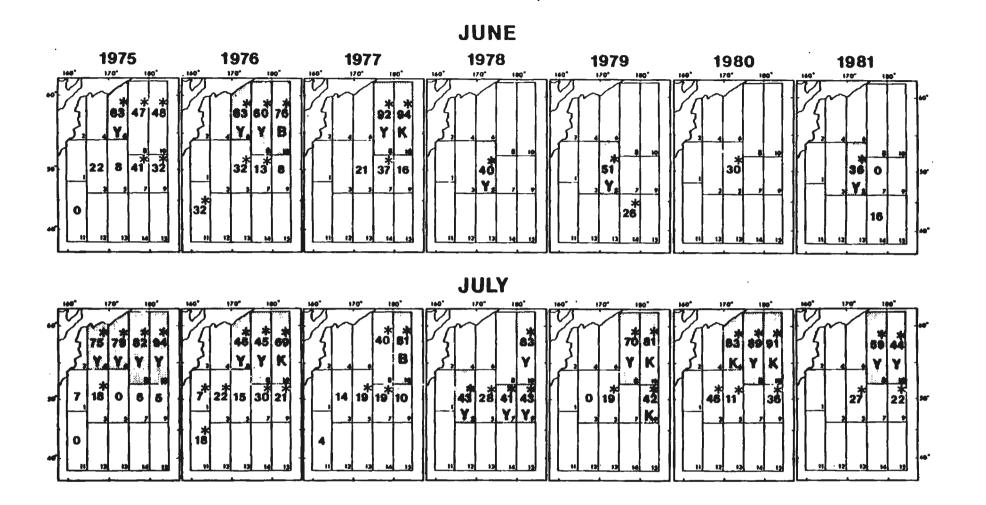


Fig. 8. Mixing proportion estimates (%) by sub-area and month (1975-81) for immature age 1.2 chinook salmon of western Alaskan origin. Shading indicates strata where western Alaska was the predominant regional stock. Letters within the shaded areas indicate the predominant western Alaskan stock: Y = Yukon, K = Kuskokwim, B = Bristol Bay. * = statistically significant estimate (α = 0.10).

Fig. 9. Mixing proportion estimates (%) by sub-area and month (1975-81) for immature age 1.2 chinook salmon of central Alaskan origin. Shading indicates strata where central Alaska was the predominant regional stock. * = statistically significant estimate (α = 0.10).

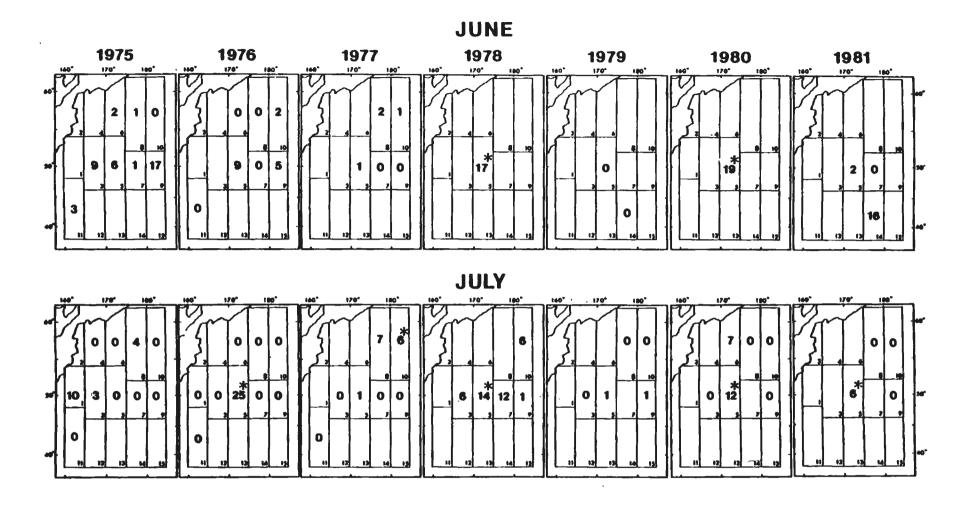


Fig. 10. Mixing proportion estimates (%) by sub-area and month (1975-81) for immature age 1.2 chinook salmon of southeastern Alaskan and British Columbian origin. * = statistically significant estimate (α = 0.10).

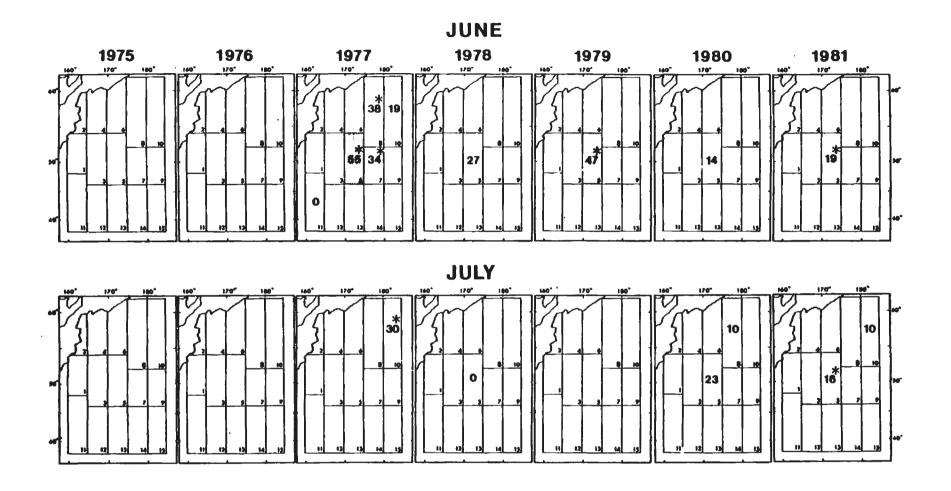


Fig. 11. Mixing proportion estimates (%) by sub-area and month (1975-81) for immature age 1.3 chinook salmon of Asian origin. Shading indicates strata where Asia was the predominant regional stock. * = statistically significant estimate (α = 0.10).

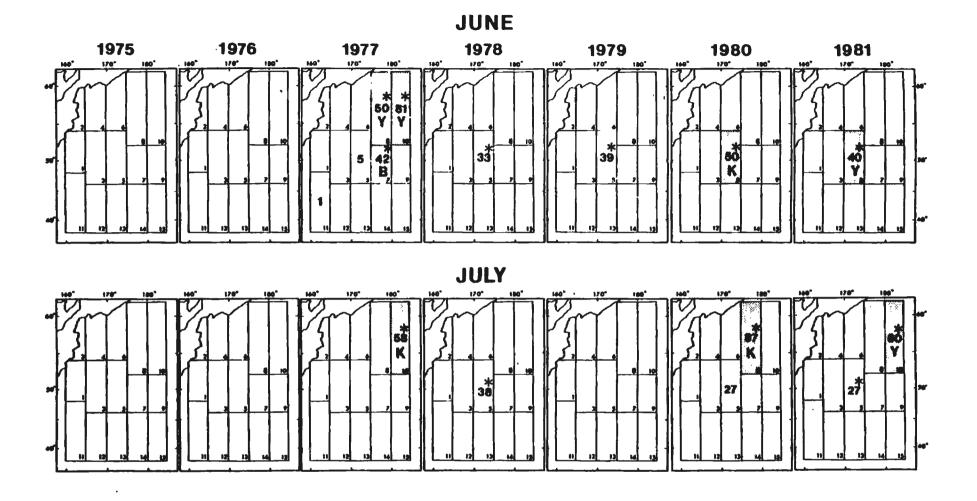


Fig. 12. Mixing proportion estimates (%) by sub-area and month (1975-81) for immature age 1.3 chinook salmon of western Alaskan origin. Shading indicates strata where western Alaska was the predominant regional stock. Letters within the shaded areas indicate the predominant western Alaskan stock: Υ = Yukon, Κ = Kuskokwim, Β = Bristol Bay. * = statistically significant estimate (α = 0.10).

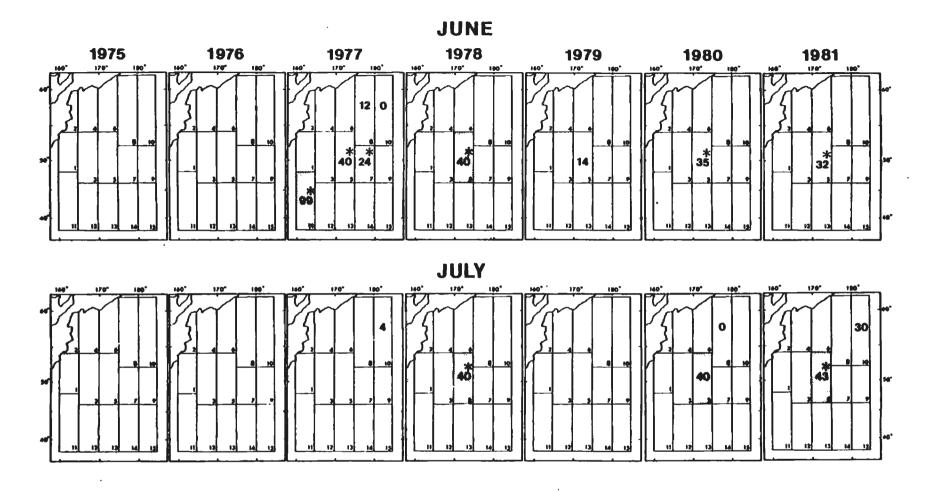


Fig. 13. Mixing proportion estimates (%) by sub-area and month (1975-81) for immature age 1.3 chinook salmon of central Alaskan origin. Shading indicates strata where central Alaska was the predominant regional stock. * = statistically significant estimate (α = 0.10).

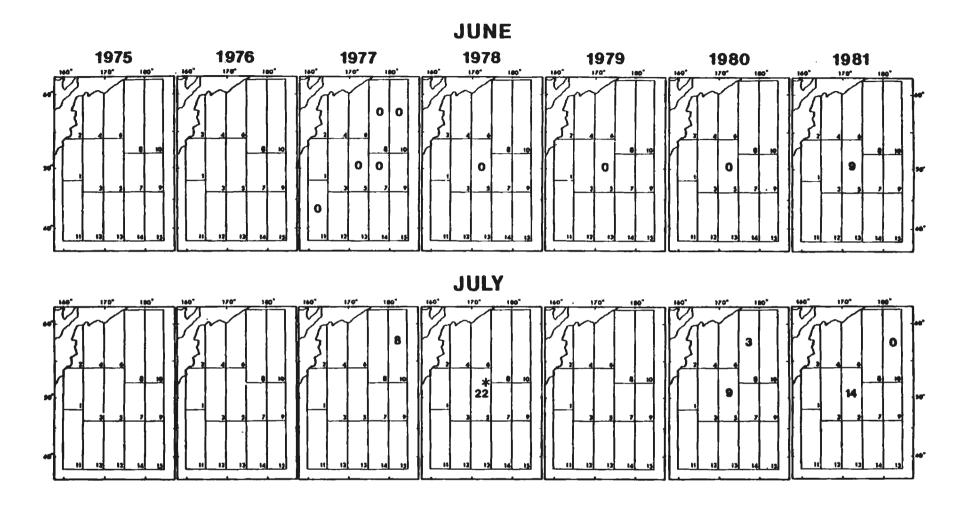


Fig. 14. Mixing proportion estimates (%) by sub-area and month (1975-81) for immature age 1.3 chinook salmon of southeastern Alaskan and British Columbian origin. * = statistically significant estimate (α = 0.10).

6

Table 1. Fleet size, fishing effort (millions of tans), and salmon catches (millions of fish) by the Japanese mothership salmon fishery, 1952-1983.

Number	of							
Mother-	Catcher				Catch	_		
ships	boatsl	Effort ²	Sockeye	Chum	Pink	Coho	Ch1nook	Total
2	67	4.7	7		7			2 1
								2.1
								7.7
							· ·	20.5
14	406	6.99	12.2	18.6	16.5	3.2	•07	50.5
								•
n 15	459	7.63	12.7	13.4	13.4	2.0	•09	41.5
n 11	379	6.08	10.3	6.6	3.6	1.7	.17	22.4
		•						
n 11	369	5.72	6.9	8.2	4.6	.6	.34	20.6
n 10	339	5.73	2.8	9.6	9.3	.7	•22	22.5
10	332	5.81	2.3	10.4	7.2	-8	-28	21.0
								16.8
								8.3
								9.3
								7.4
								9.6
•								7.9
								9.4
	Mother-ships 3 3 7 14 n 15 n 11	ships boats ¹ 3 57 3 105 7 205 14 406 n 15 459 n 11 379 n 10 339 10 332 6 245 4 172 4 172 4 172 4 172 4 172 4 172 4 172 4 172 4 172 4 172	Mother-ships Catcher boats l Effort 2 3 57 .47 3 105 1.27 7 205 2.49 14 406 6.99 n 15 459 7.63 n 11 379 6.08 n 11 369 5.72 n 10 339 5.73 10 332 5.81 6 245 3.98 4 172 2.72 4 172 2.80 4 172 2.90 4 172 2.94 4 172 2.90 4 172 2.94	Mother-ships Catcher boats 1 Effort 2 Sockeye 3 57 .47 .7 3 105 1.27 1.6 7 205 2.49 3.8 14 406 6.99 12.2 n 15 459 7.63 12.7 n 11 379 6.08 10.3 n 11 369 5.72 6.9 n 10 339 5.73 2.8 10 332 5.81 2.3 6 245 3.98 1.5 4 172 2.72 1.9 4 172 2.80 2.2 4 172 3.16 2.4 4 172 2.90 2.2 4 172 2.94 1.7	Mother-ships Catcher boats ¹ Effort ² Sockeye Chum 3 57 .47 .7 .6 3 105 1.27 1.6 2.7 7 205 2.49 3.8 9.4 14 406 6.99 12.2 18.6 m 15 459 7.63 12.7 13.4 m 11 379 6.08 10.3 6.6 m 11 369 5.72 6.9 8.2 m 10 339 5.73 2.8 9.6 10 332 5.81 2.3 10.4 6 245 3.98 1.5 6.0 4 172 2.72 1.9 3.8 4 172 2.80 2.2 3.3 4 172 3.16 2.4 3.1 4 172 2.90 2.2 2.5 4 172 2.94 <t< td=""><td>Mother-ships Catcher boats¹ Effort² Sockeye Chum Pink 3 57 .47 .7 .6 .7 3 105 1.27 1.6 2.7 3.1 7 205 2.49 3.8 9.4 5.8 14 406 6.99 12.2 18.6 16.5 n 15 459 7.63 12.7 13.4 13.4 n 11 379 6.08 10.3 6.6 3.6 n 11 369 5.72 6.9 8.2 4.6 n 10 339 5.73 2.8 9.6 9.3 10 332 5.81 2.3 10.4 7.2 6 245 3.98 1.5 6.0 9.1 4 172 2.72 1.9 3.8 1.9 4 172 2.80 2.2 3.3 3.4 4 172</td><td>Mother-ships Catcher boats l Effort l Sockeye Chum Pink Coho 3 57 .47 .7 .6 .7 + 3 105 1.27 1.6 2.7 3.1 .3 7 205 2.49 3.8 9.4 5.8 1.4 14 406 6.99 12.2 18.6 16.5 3.2 n 15 459 7.63 12.7 13.4 13.4 2.0 n 11 379 6.08 10.3 6.6 3.6 1.7 n 11 369 5.72 6.9 8.2 4.6 .6 n 10 339 5.73 2.8 9.6 9.3 .7 10 332 5.81 2.3 10.4 7.2 .8 6 245 3.98 1.5 6.0 9.1 .1 4 172 2.80 2.2 3.3</td><td>Mother-ships Catcher boats Effort2 Sockeye Chum Pink Coho Chinook 3 57 .47 .7 .6 .7 + + + + 3 105 1.27 1.6 2.7 3.1 .3 + + .07 12.7 3.8 9.4 5.8 1.4 .07 14 .07 14 406 6.99 12.2 18.6 16.5 3.2 .07 m 15 459 7.63 12.7 13.4 13.4 2.0 .09 m 11 379 6.08 10.3 6.6 3.6 1.7 .17 m 11 369 5.72 6.9 8.2 4.6 .6 .34 m 10 339 5.73 2.8 9.6 9.3 .7 .22 10 332 5.81 2.3 10.4 7.2 .8 .28 6 245</td></t<>	Mother-ships Catcher boats¹ Effort² Sockeye Chum Pink 3 57 .47 .7 .6 .7 3 105 1.27 1.6 2.7 3.1 7 205 2.49 3.8 9.4 5.8 14 406 6.99 12.2 18.6 16.5 n 15 459 7.63 12.7 13.4 13.4 n 11 379 6.08 10.3 6.6 3.6 n 11 369 5.72 6.9 8.2 4.6 n 10 339 5.73 2.8 9.6 9.3 10 332 5.81 2.3 10.4 7.2 6 245 3.98 1.5 6.0 9.1 4 172 2.72 1.9 3.8 1.9 4 172 2.80 2.2 3.3 3.4 4 172	Mother-ships Catcher boats l Effort l Sockeye Chum Pink Coho 3 57 .47 .7 .6 .7 + 3 105 1.27 1.6 2.7 3.1 .3 7 205 2.49 3.8 9.4 5.8 1.4 14 406 6.99 12.2 18.6 16.5 3.2 n 15 459 7.63 12.7 13.4 13.4 2.0 n 11 379 6.08 10.3 6.6 3.6 1.7 n 11 369 5.72 6.9 8.2 4.6 .6 n 10 339 5.73 2.8 9.6 9.3 .7 10 332 5.81 2.3 10.4 7.2 .8 6 245 3.98 1.5 6.0 9.1 .1 4 172 2.80 2.2 3.3	Mother-ships Catcher boats Effort2 Sockeye Chum Pink Coho Chinook 3 57 .47 .7 .6 .7 + + + + 3 105 1.27 1.6 2.7 3.1 .3 + + .07 12.7 3.8 9.4 5.8 1.4 .07 14 .07 14 406 6.99 12.2 18.6 16.5 3.2 .07 m 15 459 7.63 12.7 13.4 13.4 2.0 .09 m 11 379 6.08 10.3 6.6 3.6 1.7 .17 m 11 369 5.72 6.9 8.2 4.6 .6 .34 m 10 339 5.73 2.8 9.6 9.3 .7 .22 10 332 5.81 2.3 10.4 7.2 .8 .28 6 245

 $^{^{1}\}mbox{Number of catcher vessels include scout vessels.}$ $^{2}\mbox{Excluding effort in the Okhotsk Sea in 1955-1958.}$

Table 2. Catches of chinook salmon (in thousands of fish), effort (millions of tans) and CPUE in areas 5 (June-July) plus 8 and 10 (6/21-7/31) and for the total mothership fishery, 1952-83.

		Areas 5 +			A11 a	
<u>Year</u>	Catch	Effort	CPUE x 100	Catch	Effort	CPUE x 100
1952	+	•1	+	1	•5	•2
53	0	.4	0 -	3	1.3	• 2
54	2	•6	•3	57	2.5	2.3
55	2	1.0	•2	43	7.0	•6
56	65	4.8	1.4	117	9.3	1.3
57	13	1.7	•8	17	6.6	•3
58	2	1.1	•2	37	8.6	.4
59	13	2.0	.7	63	7.1	•9
60	117	1.8	6.6	180	6.5	2.8
61	4	1.1	.4	31	5.0	•6
62	30	1.0	3.1	122	5.9	2.1
63	33	1.3	2.5	88	6.0	1.5
64	198	2.2	9.0	410	7.5	5.4
65	85	1.7	4.9	184	6.1	3.0
66	101	2.2	4.6	208	5.2	4.0
67	54	1.9	2.9	127	5.2	2.4
68	295	2.9	10.3	362	5.9	6.1
69	419	2.3	17.9	554	6.2	8.9
70	279	2.2	12.5	437	6.0	7 • 2
71	151	3.0	5.0	206	5.8	3.5
72	177	2.7	6.6	260	5.9	4.4
73	35	2.2	1.6	119	5.9	2.0
74	239	2.2	11.1	361	5.4	6.6
75	32	2.1	1.5	162	5.6	2.9
76	90	2.0	4.4	285	5.8	4.9
77	68	2.6	2.6	93	4.0	2.3
78	103	2.5	4.1	105	2.7	3.9
79	125	2.7	4.6	126	2.8	4.5
80	696	2.9	24.0	704	3.1	22.7
81	88	2.9	3.0	88	2.9	3.0
82	104	2.8	3.7	107	2.9	3.7
83	81	2.7	3.0	87	2.8	3.1

Table 3. Recoveries of coded-wire tagged chinook salmon by U.S. observers on foreign or joint-venture groundfish vessels in waters west of 155°W, 1981 to July 1984. Records are sorted by source of information and by region of recovery.

			Release information ¹	Recovery information						
Region of		2		_		West	Total	Fork		
recovery	Tag code	Date ²	Location ³	Date	Latitude	Long1 tude	age ⁴	length		
A. Recove	ries in Dah	lberg (l	982)							
N. Pacif	ic									
	04-20-12	5/80	Ship Cr. (Cook Inlet: 247-50)	11/81	55-00	158-12	2	410 mm		
	02-20-00	7/79	Babine R., British Columbia	6/82	53-05	167-11	4	615		
Bering S	ea									
	07-22-43	9/80	Elk R., Oregon	5/82	54-21	165-45	3	520		
B. Recoveri	es in Werth	eimer and	d Dahlberg (1983)							
N. Pacif	ic									
	04-20-34	3/81	Crooked Cr. (Cook Inlet: 244-30)	10/82	54-37	158-44	2	470		
	07-22-39	10/80	Salmon R., Oregon	11/82	54-56	157-26	3	600		
	07-25-05	8/81	Salmon R., Oregon	11/82	54-43	158 - 09	2	520		
	02-18-41	5/81	Little Nitinat R., British Columbia	3/83	56-51	15 5- 55	3			
	02-20-01	5/80	Kitimat R., British Columbia	2/83	57-37	15 5-1 2	4	800		
Bering S	ea									
J	04-20-34	3/81	Crooked Cr. (Cook Inlet: 244-30)	11/82	55-26	167-58	2	505		
C. Recoveri	es reported	after W	ertheimer and Dahlberg (1983)							
N. Pacif	ic									
	04-20-40	5/81	Deer Mtn. (SE Alaska: 101-47)	1/84	56-58	155-23	5	820		
	02-23-05	6/82	Sooke R., south Vancouver Island	2/84		155-13	3	490		
	02-21-59	5/82	Chilliwack R., southern B.C.	2/84	57-11	155-46	3	660		
	04-21-21	5/82	Deer Mtn. (SE Alaska: 101-47)	2/84		155-18	4	560		
	04-22-02	5/82	Crystal Lake (SE Alaska: 106-44)	3/84	57-13	155-40	4	560		
	07-27-18	3/83	McKenzie R., Oregon	2/84	57-33	155-18	3	540		
	04-21-21	5/82	Deer Mtn. (SE Alaska: 101-47)	3/84	57-58	155-54	4	541		

Table 3. Recoveries of coded-wire tagged chinook salmon by U.S. observers on foreign or joint-venture groundfish vessels in waters west of 155°W, 1981 to July 1984. Records are sorted by source of information and by region of recovery - cont'd.

			Release information ¹		Recov	ery inform	at1on	
Region of			Refease Information-			West	Total	Fork
recovery	Tag code	Date ²	Location ³	Date	Latitude	Longi tude	age ⁴	length
C. Recoveri	les reported	after We	ertheimer and Dahlberg (1983) - cont'o	i.				
N. Pacif	ic - cont'd	•						
	04-21-21	5/82	Deer Mtn. (SE Alaska: 101-47)	2/84	57-11	155-20	4	472
	04-21-21	5/82	Deer Mtn. (SE Alaska: 101-47)	3/84	56-46	155-36	4	600
	02-22-03	6/82	Conuma R., west Vancouver Island	2/84	57-36	155-21	3	500
	02-16-61	5/81	Robertson Cr., east Vancouver Is.	2/84	57-21	. 155-36	4	620
	04-20-42	5/81	Crystal Lk. (SE Alaska: 106-44)	3/84	56~46	155-36	5	720
	04-21-21	5/82	Deer Mtn. (SE Alaska: 101-47)	2/84	57-21	155 -36	4	630
	02-21-59	5/82	Chilliwack R., southern B.C.	3/84	56-41	155-41	3	600
	07-20-54	3/82	McKenzie R., Oregon	2/84	57-40	155-14	4	600
	04-40-05	5/82	Whitman Lk. (SE Alaska: 101-45)	2/84	54-06	157-54	4	730
Bering S	Sea							
•	04-17-26	9/80	Stikine R. (SE Alaska: 108-40)	2/84	. 54–40	165-21	5	680
	07-24-20	3/82	Willamette R., Oregon	4/84	54-50	165-12	4	650
	03-17-16	5/81	Little Port Walter (SE Alaska: 109-10)	4/84	54-51	165-26	5	690
	60-33-42	11/80	Yaquina Bay, Oregon	11/83	54-39	166-13	4	7 9 0

¹Release information is from Johnson (1984).

10 2 -

²Month and year of last releases of fish bearing tags with code.

³Region and ADF&G management district and sub-district codes are indicated in parentheses for Alaskan release areas.

⁴Year of recovery minus brood year.

Table 4. Sixty scale characters calculated for use in the scale pattern analyses.

```
Character
                              Description<sup>a</sup>
  No.
      Size Zone 1
   2
     Size Zone 2
     Size Zone 3
     Size Zone 1 + size Zone 2
   5 Size Zone 2 + size Zone 3
   6 Size Zone 1 + size Zone 2 + size Zone 3
   7 No. circuli Zone 1 + no. circuli Zone 2 + no. circuli Zone 3
   8 Size zone 2/(size Zone 1 + size Zone 2 + size Zone 3)
     (Size Zone 1 + size Zone 2 + size Zone 3)/(no. circuli Zone 1 + no. circuli
        Zone 2 + no. circuli Zone 3)
     (Size Zone 1 + size Zone 2)/(size Zone 1 + size Zone 2 + size Zone 3)
  10
     (Size Zone 2 + \text{size Zone } 3)/(size Zone 1 + \text{size Zone } 2 + \text{size Zone } 3)
  12 No. circuli Zone 1
     No. circuli Zone 2
  13
     No. circuli Zone 3
     No. circuli Zone 1 + no. circuli Zone 2
     No. circuli Zone 2 + no. circuli Zone 3
  17
     Size Zone 1/no. circuli Zone 1
     Size Zone 2/no. circuli Zone 2
     Size Zone 3/no. circuli Zone 3
     (Size Zone 1 + size Zone 2)/(no. circuli Zone 1 + no. circuli Zone 2)
     (Size Zone 2 + size Zone 3)/(no. circuli Zone 2 + no. circuli Zone 3)
     Distance Cl to C3 in Zones 2+3/(size Zone l + size Zone 2 + size Zone 3)
     Distance C4 to C6 in Zones 2+3/(size Zone 1 + size Zone 2 + size Zone 3)
     Distance C7 to C9 in Zones 2+3/(size Zone 1 + size Zone 2 + size Zone 3)
     Distance Cl0 to Cl2 in Zones 2+3/(size Zone 1 + size Zone 2 + size Zone 3)
     Distance Cl3 to Cl5 in Zones 2+3/(size Zone 1 + size Zone 2 + size Zone 3)
 27
     Distance Cl6 to Cl8 in Zones 2+3/(size Zone 1 + size Zone 2 + size Zone 3)
     Distance Cl9 to C21 in Zones 2+3/(size Zone 1 + size Zone 2 + size Zone 3)
     Distance C22 to C24 in Zones 2+3/(size Zone 1 + size Zone 2 + size Zone 3)
     Distance C25 to C27 in Zones 2+3/(size Zone 1 + size Zone 2 + size Zone 3)
     Distance C28 to C30 in Zones 2+3/(size Zone 1 + size Zone 2 + size Zone 3)
     Distance C31 to C33 in Zones 2+3/(size Zone 1 + size Zone 2 + size Zone 3)
 33
     Distance C34 to C36 in Zones 2+3/(size Zone 1 + size Zone 2 + size Zone 3)
     Distance C1 to C9 in Zones 2+3 (= character Nos. 49 + 50 + 51)
     Distance Cl0 to Cl8 in Zones 2+3 (= character Nos. 52 + 53 + 54)
     Distance C19 to C27 in Zones 2+3 (= character Nos. 55 + 56 + 57)
 37
     Distance C28 to C36 in Zones 2+3 (= character Nos. 58 + 59 + 60)
 38
     Radius of focus
     Distance C2 - C4 in Zone 1
     Distance C5 - C7 in Zone 1
```

Table 4. Sixty scale characters calculated for use in the scale pattern analyses - continued.

Chara	
No.	Description ^a
41	Distance C8 - C10 in Zone 1
42	
43	Distance Cl4 - Cl6 in Zone 1
44	Distance C2 - C4 in Zone 1/(size Zone 1 + size Zone 2 + size Zone 3)
45	Distance C5 - C7 in Zone 1/(size Zone 1 + size Zone 2 + size Zone 3)
46	Distance C8 - C10 in Zone 1/(size Zone 1 + size Zone 2 + size Zone 3)
. 47	Distance Cll - Cl3 in Zone 1/(size Zone 1 + size Zone 2 + size Zone 3)
48	Distance C14 - C16 in Zone 1/(size Zone 1 + size Zone 2 + size Zone 3)
49	Distance Cl to C3 in Zones 2+3
50	Distance C4 to C6 in Zones 2+3
51	Distance C7 to C9 in Zones 2+3
52	Distance ClO to Cl2 in Zones 2+3
53	Distance Cl3 to Cl5 in Zones 2+3
54	Distance Cl6 to Cl8 in Zones 2+3
55	Distance C19 to C21 in Zones 2+3
56	Distance C22 to C24 in Zones 2+3
57	Distance C25 to C27 in Zones 2+3
58	Distance C28 to C30 in Zones 2+3
59	Distance C31 to C33 in Zones 2+3
60	Distance C34 to C36 in Zones 2+3

- ^aZone 1: The area of the scale from the center of the focus to the outer edge of the last circulus in the freshwater annulus.
- Zone 2: The area of the scale from the outer edge of the last circulus in the freshwater annulus to the outer edge of the last freshwater circulus.
- Zone 3: The area of the scale from the outer edge of the last freshwater circulus to the outer edge of the last circulus in the first ocean annulus.
 - Cn: The nth circulus from the focus of the scale.

Table 5. Sample sizes of digitized scales in various strata of region, brood year, ocean age, and sex, which were used in ANOVAs to assess variability due to the four factors.

			Ocean age					
	Brood	•	3		4+			
Region	year	Male	Female	Male	Female			
Asia	1973	76	31	59	99			
110 24	1974	107	41	67	117			
	1975	52	29	39	66			
Western	1974	145	18	75	138			
Alaska	1975	160	78	202	382			
	1976	165	72	160	192			
Central	1974	54	43	31	38			
Alaska	1975	20	32	80	57			
	1976	50	42	52	51			
S.E. Alaska/	1974	6	9	28	28			
B.C.	1975	45	56	85	91			
	1976	53	82	27	50			

Table 6. Results of ANOVA series I (4 regions x 2 brood years x 2 ages x 2 sexes). Tabulated values are the probabilities of the resulting F-value.

Character		Brood	Ocean	
no.1	Region	year	age	Sex_
3	.0133	•0000	•5055	.1735
5	.0118	•0000	.1927	.1289
6	.0102	•0000	.2977	.1164
6 7	.0056	•0000	.0993	•3503
9	.0157	•0770	.6125	•4205
11	•1794	.2398	•5050	.2298
12	.0348	•0000	.6372	.7492
14	.0116	•0000	.7232	.3860
16	.0120	.0000	•0023	.0595
18	.3470	.0602	.7646	.3774
19	.0034	•9212	.0008	.1791
26	.0046	•0000	.1801	.5361
27	.0121	•0000	.1605	.4063
31	.0059	•0000	.8474	.9126
36	.0000	•0089	.2492	.0950
38	.2212	•0000	.4994	.3402
56	.0001	.1322	.1894	.1322
57	.0022	•0001	•5558	.3065
58	.0124	•0000	•6824	.6071
No. of signifi	.cant			
F values ($\alpha =$		14	2	0

¹See Table 4.

Table 7. Results of ANOVA series II (3 regions x 3 brood years x 2 ages x 2 sexes). Tabulated values are the probabilities of the resulting F-values.

Character		Brood	Ocean	
no.1	Region	year	age	Sex
3	.0218	•0000	.3678	.0876
3 5	•0208	•0000	.2289	.1051
6	.0150	•0000	•3677	.0507
7	.0268	.0000	.1382	.1323
9	.0020	.8444	•9964	.1104
1 i	.4807	•0000	•4334	.4457
12	.1383	•0000	.8363	•5206
14	.0449	•0000	.3477	.2707
16 -	.2653	.0000	.0933	.2954
18	.0209	•0000	•9234	.8741
19	•0007	.9826	•5935	.0452
26	.0374	•0000	•5212	.8218
27	.0372	•0000	•0736	.7279
31	.0478	•0000	•9783	.5561
36	•0000	.0003	.7616	.0815
38	.3173	.0000	.9972	.3022
56	•0000	.0344	.8035	.0101
57	•0021	.0000	.9661	.2139
58	.0274	•0000	.6191	.2432
No. of signifi	cant			
F values ($\alpha =$		17	. 0	2

¹See Table 4.

Table 8. Brood-year standards needed to classify immature ages 1.2 and 1.3 chinook salmon in the 1975-81 high seas samples.

Brood-year	_in brood-	ses included year standard	by brood-	ample classified year standard
standard	Age class	Return year	Age class	Year
1970	1.4	1976	1.3	1975
	1.5	1977		
1971A	1.3	1976	1.2	1975
	1.4	1977		
	1.5	1978		
1971B	1.4	1977	1.3	1976
	1.5	1978		
1972A	1.3	1977	1.2	1976
	1.4	1978		
	1.5	1979		
1972В	1.4	1978	1.3	1977
	1.5	1979		• • • • • • • • • • • • • • • • • • • •
1973A	1.3	1978	1.2	1977
177511	1.4	1979		2711
·	1.5	1980		
1973В	1.4	1979	1.3	1978
	1.5	1980		27.0
1974A	1.3	1979	1.2	1978
	1.4	1980		•
	1.5	1981		
1974B	1.4	1980	1.3	1979
	1.5	1981		
1975A	1.3	1980	1.2	1979
	1.4	1981		
	1.5	1982		
1975B	1.4	1981	1.3	1980
	1.5	1982		•
1976A	1.3	1981	1.2	1980
_ · · · - ·	1.4	1982		
	1.5	1983		
1976В	1.4	1982	1.3	1981
_ · · · -	1.5	1983	- · · ·	
1977	1.3	1982	1.2	1981
	1.4	1983	± ∮ 	1701

Table 9. Chinook salmon run size indices, 1976-83, used in the construction of brood-year standard samples for a) Asia, b) western Alaska, c) central Alaska, and d) southeast Alaska and British Columbia. Indices are in thousands of fish; lack of decimal indicates original data were rounded to thousands.

Stock	1976	1977	1978	1979	1980	1981	1982	1983
a) Asian chinook salmon	commercial	catch sta	tisticsl					
Kamchatka River	172	259	302	248	117	140	163	199
Bolshaya River	24	23	12	32	9	17	15	20
b) Western Alaska chino	ok salmon t	otal run s	ize estima	tes				
Yukon River ²	146	193	247	294	380	410	223	258.3
Kuskokwim River ²	117	142	157	180	173	215	199	133.5
Kanektok River ²	19.5	27.0	25.0	19.0	18.5	43.0	32.5	73.4
Goodnews Bay	7.0	7.0	9.2	6.7	4.7	14.3	13.0	29.6
Nuskagak River ³	167.6	155.3	255.0	261.2	217.7	356.5	359.3	303.3
Togiak River ³	44.2	55.6	97.3	50.2	25.4	51.7	57.4	61.1
c) Central Alaska chino	ok salmon d	ommercial,	subsisten	ce and spo	rt catches	•		
Cooper River ⁴	35.1	25.6	33.2	25.4	13.1	25.0	54.0	59.4
Cook Inlet ⁵	27.7	38.0	42.3	43.3	32.1	37.4	50.4	46.0
d) Southeast Alaska/Bri				rminal and	in-river	commercial,	subsiste	nce
and sport catches, a	nd escapeme	nt estimat	es					
Alsek River ⁶	2.7	6.5	7.3	9.5	5.6	4.1	4.7	4.0
Taku River ⁶	10.1	12.9	5.5	7.1	15.2	17.2	8.5	3.3
Stikine River ⁶	5.5	6.8	5.6	11.0	19.3	28.0	25.0	6.5
Nass River ⁷	17.9	31.7	43.0	23.7	22.3	20.8	18.9	17.2
Skeena River ⁷	23.0	51.7	38.2	38.9	41.9	55.0	42.6	36.4
Bella Coola River ⁷	32.9	36.8	27.8	21.5	12.2	9.1	14.8	10.4
Fraser River ⁸	154.4	201.9	155.9	136.7	111.1	84.9	124.7	82.1

Sources of data and statistics:

¹Catches are for East and West Kamchatka (Ito 1983), the great majority of which are from Kamchatka and Bolshaya River runs, respectively. 1983 value is mean of 1975-82 catches as 1983 USSR statistics are not yet available.

²Based on harvest, an escapement index, and a supposed probable exploitation rate (R. Regnart, ADF&G, pers. comm.). 1983 value from W. Arvey, ADF&G (pers. comm.).

³ADF&G (1982a, b; 1983); S. Behnke, ADF&G (pers. comm.); W. Bucher, ADF&G (pers. comm.); McBride and Wilcock (1983); and J. Wright, ADF&G (pers. comm.).

⁴ADF&G (1982c); McBride and Wilcock (1983); M. Merritt, ADF&G (pers. comm.); Mills (1982); K. Roberson, ADF&G (pers. comm.); and F. Williams, ADF&G (pers. comm.).

⁵ADF&G (1982b, c); S. Hammerstrom, ADF&G (pers. comm.); McBride and Wilcock (1983); P. Ruesch, ADF&G (pers. comm.).

⁶ADF&G (1981); Cook (1981); DFO Canada (1979-82); P. Etherton, DFO (pers. comm.); Holland et al. (1983); D. Ingledue, ADF&G (pers. comm.); P. Kissner, ADF&G (pers. comm.); Kissner (1983); D. McBride, ADF&G (pers. comm.); and D. Reid, DFO (pers. comm.).

7P. Starr, DFO (pers. comm.).

⁸DFO Canada (1981); Fraser et al. (1982); and P. Starr, DFO (pers. comm.).

72

Table 10. Estimated age compositions for Asian chinook salmon stocks represented in FRI scale collection, based on FRI age determinations and on sub-samples of scales which could be completely aged.

		Total no.	Per	cent	compo	sitio	n of	reada	ble s	cales
Stock	Year	readable	0.2	0.3	0.4	1.2	1.3	1.4	1.5	Other
Kamchatka R.	1976	177	0	0	0	5	79	15	0	1
	1977	195	0	0	0	2	55	35	0	8
	1978	187	0	1	0	11	39	42	2	6
	1979	137	0	0	0	4	59	32	1	4
	1980	184	0	2	1	17	33	39	5	3
	1981	171	1	1	0	2	77	19	1	0
	1982	368	0	0	0	17	58	20	0	5
	1983	196	0	0	0	9	58	20	1	13
Bolshaya R.	1976	186	0	0	0	29	32	34	2	3
•	1977 ¹	-	0	1	1	.7	35	51	4	1
	1978	146	0	4	1	3	24	60	7	1
	1979	187	0	0	0	2	38	57	1	2
	1980	178	1	0	3	10	14	69	3	1
	1981	178	0	1	2	1	46	43	9	0
	1982	115	. 0	1	ī	1	17	74	6	0
	1983	200	0	0	0	Ō	51	45	3	1

 $^{^{1}}$ 1977 samples were not available for Bolshaya River. Unweighted means were used, based on 1975-76, 1978-83 data (1975 values not tabulated).

Table 11. Estimated age compositions for western Alaska chinook salmon stocks represented in FRI scale collection, based on FRI age determinations and on sub-samples of scales which could be completely aged.

		Total no.		cent	compo					cales
Stock	Year	readable	0.2	0.3	0.4	1.2	1.3	1.4	1.5	Other
Yukon River	1976	50 9	0	0	0	4	40	53	3	0
(Emmonak fishery)	1977	384	0	0	0	0	20	77	3	0
(=	1978	459	Ō	0	0	12	8	72	6	2
	1979	879	0	0	0	29	34	28	8	0
	1980	794	Ō	0	0	6	49	41	2	2
	1981	794	0	0	0	7	20	71	2	0
	1982	1064	0	0	0	9	23	50	10	7
	1983	867	0	0	0	4	19	65	7	5
Kuskokwim River ¹	1976	230	0	0	0	7	27	65	0	1
	1977	105	0	0	0	1	38	51	8	2
	1978	446	0	0	0	8	13	68	8	3
	1979	214	0	0	0	60	17	16	6	2
	1980	68	. 0	0	0	10	63	19	7	0
	1981	669	0	0	0	10	32	57	1	0
	1982	407	0	1	1	12	19	59	6	2
	1983	244	0	1	0	12	15	60	10	2
Kanektok River ²	1976	118	0	0	0	41	30	25	2	2
(Quinhagak)	1977	203	0	0	0	4	42	52	2	0
((,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1978	155	Ö	Ö	Ö	3	5	83	8	1
	1981	312	Ō	Ō	Ō	60	18	20	1	1
•	1982	209	0	1	0	9	59	24	3	3
Goodnews Bay ²	1977	22	0	0	0	0	41	50	9	0
5-5-11-11-11-11-11-11-11-11-11-11-11-11-	1978	17	Ö	Ö	Ö	Ö	12	82	0	6
	1981	124	Ö	Ö	Ö	57	17	26	0	Ō
	1982	64	0	2	0	9	64	20	2	3
Togiak River	1976	208·	0	0	0	42	33	24	0	0
_	1977	278	Ö	Ō	1 .	8	55	34	1	1
	1978	300	0 .	Ö	ō	2	6	80	2	11
	1979	273	Ö	Ö	Ö	41	8	34	17	0
•	1980	21	Ō	Ō	Ō	19	48	24	5	5
	1981	127	Ö	Ŏ	Ö	40	23	35	1	2
	1982	217	0	0	1	11	56	23	3	6
	1983	89	Ō	Ō	Ō	24	8	60	7	2

Table 11. Estimated age compositions for western Alaska chinook salmon stocks represented in FRI scale collection, based on FRI age determinations and on sub-samples of scales which could be completely aged - cont'd.

		Total no.	Per	cent	сопро	sitio	n of	reada	ble s	cales
Stock	Year	readable	0.2	0.3	0.4	1.2	1.3	1.4	1.5	Other
Nushagak River	1976	349	0	0	0	3	36	58	2	1
.	1977	414	0	0	0	2	34	60	3	1
	1978	301	0	0	0	15	31	43	8	4
	1979	431	0	0	0	42	12	41	4	1
	1980	349	0	1	1	2	66	21	5	3
	1981	654	0	0	0	25	33	41	1	0
_	1982	501	0	0	1	4	47	42	4	2
_	1983	136	0	0	0	0	5	84	7	4

1976 includes Kwegooyuk samples only; 1977 and 1983 include Bethel samples only; 1978 and 1981 include Kwegooyuk and Bethel samples; 1979-80 include Kogrukluk samples only; 1983 includes Kwegooyuk, Bethel and Aniak sonar station samples.

²Samples were not available for 1979-80 and 1983, and for Goodnews Bay only, for 1976. Catches-at-age for these years were exluded from weighting procedure as Kanektok and Goodnews Bay have relatively minor contribution to the western Alaska and Kuskokwim standards.

Table 12. Estimated age compositions for central Alaska chinook salmon stocks represented in FRI scale collection, based on FRI age determinations and sub-samples of scales which could be completely aged.

		Total no.	Per	cent	сопро	sitio	n of	reada	ble s	cales
Stock	Year	readable	0.2	0.3	0.4	1.2	1.3	1.4	1.5	Other
Cook Inlet ¹	1976	749	0	0	0	21	25	36	1	172
COOK INICE	1977	848	Ö	Ö	Ö	30	37	28	2	3
	1978	738	2	Ô	0	33	27	36	0	2
	1979	486	0	Ō	0	7	37	50	5	1
	1980	588	Ō	1	2	16	27	45	5	4
	1981	1215	0	0	0	18	40	35	2	5
	1982	749	0	0	0	29	37	31	1	2
	1983	400	1	0	0	24	29	42	3	1
Copper River	1976	128	0	0	0	2	23	73	0	2
	1977	138	0	0	0	6	58	34	0	2
	1 9 78	113	0	0	0	10	39	48	0	4
	1979	93	0	0	0	0	46	53	1	0
	19803	219	_	0	0	1	28	55	1	15
	1981	i53	0	0	0	5	44	44	0	6
	1982	1399	0	0	0	6	52	23	0	18 ⁴
	1983	194	0	0	0	4	65	31	0	1 _

¹Cook Inlet age compositions are from combined fishery samples, except for 1982 which samples are from Tyonek fishery only.

²Mostly age .l fish.

³No samples available; age composition taken from Table 21 of McBride and Wilcock (1983). Age 0.2 fish pooled with "other," which consisted mainly of age 2.3 and 2.4 fish.

⁴Mostly age 2.3 and 2.4 fish.

Table 13. Estimated age compositions of southeast Alaska and British Columbia chinook salmon stocks represented in FRI scale collection, based on FRI age determinations and sub-samples of scales which could be completely aged.

		Total no.						reada	ble s	cales
Stock	Year	readable	0.2	0.3	0.4	1.2	1.3	1.4	1.5	Other
Alsek River ¹	1976	129	0	0	0	9	40	46	0	6
WIREK WINET-	1977	170	0	0	0	11	47	39	0	3
	1978	42	ő	0	0	2	64	26	0	7
	1979	50	Ö	6	2	2	50	38	0	2
	1980	53	ő	ő	2	8	30	60	Õ	Õ
	1981	63	Ö	Ö	3	14	41	37	Ö	5
	1982	178	i	ő	1	16	39	42	1	2
	1983	88	ō	Ö	ō	5	65	27	Ō	2
Taku River ²	1976	126	0	0	0	30	38	25	1	6
	1977	462	0	0	0	26	26	31	1	16
	1978	1002	0	0	0	40	9	20	1	30
	1979	820	0	0	0	47	20	5	0	28
	1980	897	0	0	0	25	29	25	0	21
	1981	919	0	0	0	23	30	36	0	11
	1982	1027	0	0	0	12	20	46	2	21
	1983	198	1	0	0	59	4	16	0	20
Stikine River ³	1976	435	0	0	1	29	16	42	8	4
	1977	96	0	0	0	0	42	49	6	3
	1979	35	6	8	2	26	49	9	0	2
	1980	143	0	2	1	19	38	34	1	4
	1981	613	0	3	2	4	29	58	1	3
	1982	435	0	0	0	5	15	76	2	2
	1983	345	0	0	0	30	19	42	7	2
Nass River ⁴	1977	27	0	0	0	26	52	22	0	0
	1978	39	0	3	0	31	44	18	0	5
	1979	71	0	3	0	21	49	25	0	1
	1980	138	1	1	0	19	69	7	0	2
	1981	95	1	3	2	12	42	36	0	4
	1982	105	0	0	0	26	60	14	0	0
	1983	19	0	0	0	32	42	26	0	0
Skeena River	1976	138	0	2	1	11	39	46	1	0
	1977	182	1	1	0	18	48	28	1	3
	1978	129	0	0	0	27	40	26	0	6
	1979	156	0	0	0	26	46	26	0	3
	1980	122	1	0	1	11	70	15	2	1
	1981	129	1	0	0	13	39	47	0	0
	1982	121	0	0	1	21	49	28	2	0
	1983	264	0	0	0	29	41	27	1	2

Table 13. Estimated age compositions of southeast Alaska and British Columbia chinook salmon stocks represented in FRI scale collection, based on FRI age determinations and sub-samples of scales which could be completely aged - cont'd.

		Total no.	Per	cent	compo	sitic	n of	reada	ble s	cales
Stock	Year	readable	0.2	0.3	0.4	1.2	1.3	1.4	1.5	Other
Bella Coola River	1976	23	4	0	0	30	44	17	0	4
	1977	102	4	6	4	30	27	26	0	3
	1978	141	3	6	5	18	57	10	1	1
	1979	59	2	7	12	37	14	27	2	0
	1980	95	2	8	2	11	64	11	0	2
	1981	122	2	13	11	8	45	21	0	1
-	1982	208	1	4	7	20	42	23	0	2
•	1983	111	2	5	10	13	40	22	0	10
Fraser River ⁵	1976	-	8	25	3	18	41	4	0	1
_	1977	378	16	21	1	31	27	3	0	1
•	1978	398	6	39	7	10	32	4	0	2
	1979	385	2	18	4	11	58	6	0	1
	1980	346	8	20	8	10	48	4	0	2
	1981	356	11	31	3	18	33	4	0	0
	1982	777	8	29	2	21	37	3	0	1
	1983	1117	4	19	3	6	63	4	0	1

11976-78 compositions include Klukshu and Alsek samples; 1979-81 and 1983 include Klukshu only, and 1982 includes Klukshu, Alsek, East River, and Dry Bay samples.

21976-78 compositions include Nakina samples only; 1978-80 include Taku B.C. and Taku Alaska samples; 1981 includes Taku B.C., Taku Alaska, and Nahlin; 1982 includes Nahlin and Nakina; and 1983 includes Taku weir, Taku gillnet, Nahlin and Tseta Cr. samples. Fish in "other" age groups include primarily age .1 fish.

³1976, 1981-83 compositions include Stikine B.C., Little Tahltan and Andrews Cr. samples, and 1976 includes also Stikine Alaska and 1983 includes also Tahltan samples. 1977 includes Little Tahltan, Andrews Cr., and Stikine Alaska; no samples are available for 1978; 1979 includes Stikine B.C. and Little Tahltan; 1980 includes only Stikine B.C. samples.

41976 samples were not available.

 $^{^{5}}$ 1976 composition is mean of 1975, 1977-83 (1975 values not tabulated).

3

Table 14. Comparison of Japan Fisheries Agency (JFA) and fisheries Research Institute (FRI) age determinations of chinook salmon scales, in 1975-81. Age codes are: "T." = total within ocean age group; "X." = regenerated scale or otherwise indeterminable freshwater age; "Other" = unknown maturity, other age groups; ".X" = regenerated scale or otherwise indeterminable ocean age. Percentages are based on subtotal falling into the 13 age/maturity groups indicated. Maturity determinations were made by JFA.

		No.			Maturi	ng							In	mature	2						
ear	Agency	X	T.1	T.2	T.3	T.4	T.5	.х	T.1	0.2	1.2	2.2	X.2	0.3	1.3	2.3	X.3	T.4+	.х	Other	Total
975	JFA	No.	89	322	- 82	43	2	48	125	33	2525	23	940	4	205	2	86	3	356	103	4991
		X	2.57	9:31	2.37	1.24	0.06	-	3.62	0.95	73.02	0.67	-	0.12	5.93	0.06	_	0.09	_	_	
	FRI	No.	82	303	80	44	5	72	106	3	1953	12	1395	0	177	4	124	4	524	103	4991
		X	2.96	10.93	2.89	1.59	0.18	-	3.82	0.11	70.43	0.43	-	0.00	6.38	0.14	-	0.14	-	-	
976	JPA	No.	12	303	105	48	2	24	24	6	2995	46	978	ı	376	0	86	6	312	5	5329
		X	0.31	7.72	2.68	1.22	0.05	-	0.61	0.15	76.33	1.17	-	0.03	9.58	0.00	-	0.15	-	_	
	PRI	No.	14	295	105	42	2	36	22	6	2205	32	1519	5	279	1	161	6	594	5	5329
		Z	0.46	9.79	3.48	1.39	0.07	-	0.73	0.20	73.16	1.06	-	0.17	9.26	0.03	-	0.20	-	-	
977	JPA	No.	39	539	130	95	0	101	22	0	1933	9	655	1	471	1	116	6	477	9	4604
		X	1.20	16.61	4.01	2.93	0.00	-	0.6A	0.00	59.55	0.28	-	0.03	14.51	0.03	-	0.19	-	-	
	FRI	No.	42	518	122	91	0	131	22	7	1470	9	1052	2	387	0	196	7	539	9	4604
		z	1.57	19.35	4.56	3.40	0.00	-	0.82	0.26	54.91	0.34	-	0.08	14.46	0.00	-	0.26	-	-	
978	JFA	No.	9	342	97	20	0	42	37	0	2150	13	925	0	264	5	92	4	358	7	4365
		X	0.31	11.63	3.30	0.68	0.00	-	1.26	0.00	73.10	0.44	-	0.00	8.98	0.17	-	0.14	-	-	
	PRI	No.	10	349	85	23	0	43	42	2	1905	8	1182	1	209	1	120	5	373	7	4365
		X	0.38	13.22	3.22	0.87	0.00	-	1.59	0.08	72.16	0.30	-	0.04	7.92	0.04	-	0.19	-	-	
979	JPA	No.	7	280	70	17	0	49	23	0	1488	9	484	0	218	0	51	3	312	5	3016
		z	0.33	13.24	3.31	0.80	0.00	-	1.09	0.00	70.36	0.43	-	0.00	10.31	0.00	-	0.14	-	-	
	FRI	No.	9	286	62	17	0	49	25	1	1229	9	737	0	164	0	87	3	333	5	3016
		X	0.50	15.85	3.44	0.94	0.00	-	1.39	0.06	68.09	0.50	-	0.00	9.09	0.00	-	0.17	-	-	
980	JPA	No.	4	379	66	9	, 0	43	11	0	2833	16	1208	0	303	0	100	1	455	1	54 29
		Z	0.11	10.46	1.82	0.25	0.00	-	0.30		7R.22		-	0.00	8.37	0.00	-	0.03	•	-	
	PRI	No.	6	375	66	10	0	44	12	56	2149	34	1772	11	219	0	175	4	494	2	54 29
		X	0.20	12.75	2.24	0.34	0.00	-	0.41	1.90	73.05	1.16	-	0.37	7.44	0.00	-	0.14	-	-	
981	JPA	No.	9	174	53	16	0	16	14	0	1535	37	638	0	229	0	81	1	277	0	3080
		X	0.05	8.41	2.56	0.77	0.00	-	0.68		74.23		-	0.00	11.07	0.00	-	0.05	-	-	
	PRI	No.	10	173	50	17	0	18	· 14	_	1316	35	834	1	200	0	118	1	291	0	3080
		Z	0.55	9.51	2.75	0.94	0.00	-	0.77	0.11	72.35	1.92	-	0.06	11.00	0.00	-	0.06			

¹Data base includes all scales collected from fish sampled by commercial-type gillnet in May to July south of 62°N, 160°E-175°W, and sent to PRI by JFA in accordance with scale request (see text).

Table 15. Summary of mixing proportion estimates obtained in 1975-81 scale analysis of immature age 1.2 chinook salmon, by region-of-origin. For each level of temporal and spatial stratification, the table shows the number of estimates made and, for each stock, the number of estimates indicating presence (Pres), absence (Abs), and predominance (Dom) of the stock, and the number of statistically significant estimates (Sig).

	Total					R	egiona	lstoc	k and	number	of est	lmates					
Stratum	no.		A	81a		W	estern	Alask			Centra	l Alas		Sou	theast	Alask	a/BC
	estimates	Pres	Abs	Dom	Sig	Pres	Abs	Dom	Sig	Pres	Aba	Dom	Sig	Pres	Abs	Dom	Sig
A) Mothership -																	
Bering Sea Region	ı																
10-day/INPFC area	42	31	11	6	12	42	0	36	41	27	15	1	8	17	25	0	0
Month/INPFC area	36	28	8	3	13	36	0	33	36	25	11	0	6	14	22	0	0
10-day/aub-area	39	34	5	2	15	39	0	35	38	26	13	2	9	15	24	0	0
Month/aub-area	25	23	2	3	14	25	0	22	25	18	7	0	7	11	14	0	1
10-day/region	27	25	2	1	11	27	0	25	27	20	7	1	8	15	12	0	0
Month/region	11	10	ı	0	7	11	0	1.1	11	7	4	0	4	6	5	0	1
Sub-total	180	151	29	15	72	180	0	162	178	123	57	4	42	78	102	0	2
B) Mothership -																	
North Pacific Reg	1on																
10-day/INPFC area	66	50	16	14	27	55	11	10	33	66	0	43	54	37	29	0	8
Month/INPFC area	59	42	17	10	25	53	6	10	33	59	0	39	51	32	27	1	7
10-day/aub-area	62	45	17	9	26	55	7	11	36	62	0	42	50	32	30	0	12
Month/sub-area	41	32	9	4	18	38	3	7	27	41	0	30	37	23	18	0	6
10-day/region	40	34	6	5	21	40	0	9	31	40	0	26	32	24	16	0	10
Month/region	14	12	2	2	11	14	0	2	13	14	0	10	14	8	6	0	4
Sub-total	282	215	67	45	128	255	27	48	173	282	0	190	238	156	126	1	47
C) LBDN Region																	
10-day/INPFC area	5	3	2	1	ı	5	0	0	0	5	0	4	4	1	4	0	0
Month/INPFC area	6	3	3	1	1	5	1	0	3	6	0	5	5	1	5	0	0
10-day/aub-area	6	3	3	1	1	6	0	0	1	6	0	5	5	1	5	0	0
Month/sub-area	7	4	3	l l	1	6	1	0	3	7	0	6	6	2	5	0	0
10-day/region	9	7	2	- 1	1	8	ı	0	l	.9	0	8	8	3	6	0	0
Month/region	13	8	5	2	3	11	2	0	6	13	0	11	12	4	9	0	0
Sub-total	46	28	18	7	8	41	5	0	14	46	0	39	40	12	34	0	0
Total Study Area	508	394	114	67	208	476	32	210	365	451	57	233	320	246	262	1	49

Table 16. Summary of mixing proportion estimates in 1975-81 scale analysis of immature age 1.2 chinook salmon, by western Alaskan "river"-of-origin. For each level of temporal and spatial stratification, the table shows the number of estimates made and, for each stock, the number of estimates indicating presence (Pres), absence (Abs), and predominance (Dom) of the stock, and the number of statistically significant estimates (Sig).

	Total				Alaskan	"river			number				
Stratum	no.		Yuko	n			Kusko	kwim			Bristo	l Bay	
	estimates	Pres	Abs	Dom	Sig	Pres	Abs	Dom	Sig	Pres	Abs	Dom	Sig
A) Mothership -													
Bering Sea Regio	n												
10-day/INPFC area	·35	33	2	24	24	26	9	6	8	25	10	5	8
Month/INPFC area	33	33	0	21	20	24	9	7	5	26	7	4	6
10-day/sub-area	35	34	1	23	23	23	12	4	7	2 5	10	7	8
Month/sub-area	22	22	0	15	16	15	7	5	8	17	5	2	5
10-day/region	25	24	1	20	20	19	6	3	7	18	7	1	5
Month/region	11	11	0	9	10	9	2	1	3	10	1	1	4
Sub-total	161	157	4	112	113	116	45	26	38	121	40	20	36
B) Mothership -													
North Pacific Re	gion												
10-day/INPFC area	11	10	1	6	8	8	3	3	1	3	8	0	1
Month/INPFC area	10	9	1	6	8	6	4	1	1	3	7	1	0
10-day/sub-area	11	10	1	8	8	8	3	2	1	1	10	0	0
Month/sub-area	7	6	1	6	5	6	1	1	2	1	6	0	0
10-day/region	8	8	0	7	7	6	2	0	0	2	6	0	0
Month/region	2	2	0	2	2	2	0	0	1	0	2	0	0
Sub-total	49	45	4	35	38	36	13	7	6	10	39	1	1
Total Study Area	210	202	8	147	151	152	58	33	44	131	79	21	37

Table 17. Summary of mixing proportion estimates obtained in 1975-81 scale analysis of immature age 1.3 chinook salmon, by region-of-origin. For each level of temporal and spatial stratification, the table shows the number of estimates made and, for each stock, the number of estimates indicating presence (Pres), absence (Abs), and predominance (Dom) of the stock, and the number of statistically significant estimates (Sig).

	Total					R	egional	latoci	c and	number							
Stratum	no.		A	ila		W	estern	Alask			Centra	Alasi	K &	Sou	theast	Alask	a/BC
 	estimates	Pres	Aba	Dom	Sig	Pres	Aba	Dom	Sig	Pres	Abs	Dom	Sig	Pres	Abs	Dom	S18
A) Mothership -																	
Bering Sea Region	1																
10-day/INPFC area	0																
Month/INPFC area	2	2	0	0	ì	2	0	2	2	2	0	0	0	1	1	0	(
10-day/sub-area	1	1	0	0	0	1	0	1	1	1	0	0	0	1	0	0	(
Month/sub-area	5	5	0	0	2	5	0	5	5	3	2	0	0	3	2	0	(
10-day/region	3	3	0	0	ì	3	0	3	3	2	1	0	0	2	1	0	
Month/region	6	6	0	ı	3	6	0	5	6	3	3	0	1	2	4	0	(
Sub-total	17	17	0	1	7	17	0	16	17	11	6	0	1	9.	8	0	(
B) Mothership -																	
North Pacific Reg	gion .																
10-day/INPFC area	3	2	1	0	1	3	0	2	3	3	0	l	1	3	0	0	
Honth/INPFC area	8	7	ı	2	4	8	0	3	5	8	0	3	3	5	3	0	(
10-day/aub-area	9	7	2	1	4	9	0	4	9	8	1	3	5	3	6	1	
Month/sub-area	9	8	1	2	5	9	0	3	7	9	0	4	7	3	6	0	
10-day/region	11	10	1	2	6	11	0	4	9	10	l	4	7	3	8	I	
Month/region	12	- 11 .	1	6	8	11	1	3	8	10	2	3	7	8	4	0	
Sub-total	52	45	7	13	28	51	ı	19	41	48	4	18	30	25	27	2	:
C) LBDN Region				•													
10-day/INPFC area	0															•	
Month/INPFC area	1	0	1	0	0	0	1	0	0	1	0	1	1	0	1	0	
10-day/sub-area	0										-						
Month/sub-area	1	0	1	0	0	1	0	0	0	1	0	1	1	0	1	0	
10-day/region	1	0	1	0	0	j	0	0	0	ì	0	i	l	0	1	0	
Month/region	1	0	1	0	0	1	0	0	0	1	0	ĵ	ı	0	1	0	
Sub-total	4	0	4	0	0	3	l	0	0	4	0	4	4	0	4	0	(
Total Study Area	73	62	11	14	35	71	2	35	58	63	10	22	35	34	39	2	!

Table 18. Summary of mixing proportion estimates in 1975-81 scale analysis of immature age 1.3 chinook salmon, by western Alaskan "river"-of-origin. For each level of temporal and spatial stratification, the table shows the number of estimates made and, for each stock, the number of estimates indicating presence (Pres), absence (Abs), and predominance (Dom) of the stock, and the number of statistically significant estimates (Sig).

Stratum	no.		Yukoı			r" stoc		okwim			Bristo	1 Bay	
	estimates	Pres	Abs	Dom	Sig	Pres	Abs	Dom	Sig	Pres	Abs	Dom	Sig
A) Mothership -													
Bering Sea Regio	n												
10-day/INPFC area	0												
Month/INPFC area	2	2	0	1	ì	1	1	1	0	0	2	0	0
10-day/sub-area	1	ī	0	0	Õ	ī	0	1	1	0	ī	0	0
Month/sub-area	5	5	0	3	2	4	ì	2	2	. 1	4	0	0
10-day/region	3	3	0	2	2	2	1	1	1	1	2	0	0
Month/region	5	5	Ő	2	2	3	2	2	3	1	4	1	0
Sub-total	16	16	0	8	7	11	5	7	7	3	13	1	0
B) Mothership -	•												
North Pacific Re	gion												
10-day/INPFC area	2	2	0	2	2	0	2	0	0	0	2	0	0
Month/INPFC area	3	3	0	. 2	2	1	2	1	1	0	3	0	0
10-day/sub-area	4	4	0	2	2	2	2 2	1	1	1	3	0	0
Month/sub-area	3	3	0	l	1	2	. 1	1	1	1	2	0	0
10-day/region	3	3	0	2	2	1	2	1	1	0	3	0	0
Month/region	4	4	0	ì	2	3	1	1	1	2	2	0	0
Sub-total	19	19	0	10	11	9	10	5	5	4	15	0	0
Total Study Area	35	35	0	18	18	20	15	12	12	7	28	1	0

Table 19. Mean regional stock proportion estimates (%) for chinook salmon in the mothership fishery area, obtained by Major et al. (1977b) and in the present (FRI) study. Values are averaged over the number of month/sub-area estimates obtained in the 1966-72 and 1975-81 studies, and the range of values for each stratum is shown in parentheses. A dash indicates that no estimate was made; neither study resulted in estimates for sub-area 2. "N/A" indicates that the regional category was not included in the Major et al. (1977b) study.

	Sub-		No.				Southeast Alaska,
ionth	area	Investigator	estimates	Asia	Western Alaska	Central Alaska	British Columbia
lune	1	Major et al. l	4	85(75-97)	15(3-25)		
	_	FRI ²	0				Mile Sept.
		FRI3	0				sites street
11	3	Major et al.	5	68(58-87)	32(13-42)		
		FRI ²	1	46	. 22	23	9
		FRI3	0				
**	5	Major et al.	4	65(46-74)	35(26-54)		
		FRI ²	7	20(1-36)	31(8-51)	41(26-59)	8(0-19)
		FRI3	5	32(14-55)	33(5-50)	32(14-40)	2(0- 9)
11	7	Major et al.	2	31(23-38)	69(62-77)		
		FRI ²	4	10(0-36)	23(0-41)	67(57-83)	0(0-1)
		FRI ³	1	34	42	24	0
51	9	Major et al.l	3	22(16-30)	78(70-84)		
		FRI ²	3	15(0-27)	19(8-32)	58(50-68)	8(0-17)
		FRI 3	0				
n	4	Major et al. l	2	31(14-47)	69(53-86)		
		FRI ²	0				
		FRI3	0				
11	6	Major et al. l	1	75	25		
		FRI ²	2	32(29-34)	63(63)	4(0-8)	1(0-2)
		FRI 3	0				

	_	•			Average mixin	g proportion esti	
	Sub-	_	No.				Southeast Alaska/
Month	area	Investigator	estimates	Asia	Western Alaska	Central Alaska	British Columbia
June	8	Major et al. l	4	35(4-54)	65(46-96)		PEP
	_	FRI ²	3	27(6-52)	66(47-92)	6(0-17)	1(0-2)
		FRI 3	1	38	50	12	0
**	10	Major et al. l	4	6(0-13)	94(87-100)		
		FRI ²	3	23(5-53)	73(48-94)	4(0-11)	1(0- 2)
		FRI3	ì	19	81	0	0
July	1	Major et al. l	6	75(52-89)	25(11-48)		
July	-	FRI ²	ì	0	7	93	0
		FRI3	0		·		
n	3	Major et al.	4	82(74-89)	18(11-26)		
		FRI ²	6	9(0-26)	24(0-46)	66(34-79)	1(0-6)
		FRI3	0				
**	5	Major et al. l	3	90(80-97)	10(3-20)	****	
		FRI ²	7	19(0-39)	17(0-28)	56(33-100)	8(0-25)
		FRI 3	3	13(0-23)	31(27-38)	41(40–43)	15(9-22)
**	7	Major et al.	1	44	56	apple made	
		FRI ²	4	21(0-37)	24(6-41)	52(16-78)	3(0-12)
		FRI3	0			interval	
11	9	Major et al.	1	18	82		
		FRI ²	7	33(13-78)	26(5-43)	41(17-66)	0(0-1)
		FRI ³	0				
***	4	Major et al.	2	50(37-63)	50(37-63)		
		FRI ²	1	0	75	25	0
		FRI ³	0			- Contraction of the Contraction	

Table 19. Continued.

	- 1					•	
Month	Sub- area	Investigator	No. estimated	Asia	Western Alaska	Central Alaska	Southeast Alaska/ British Columbia
						34	
July	6	Major et al. l	4	34(6-74)	66(26-94)		
•		FRI ²	3	22(10-39)	70(46-83)	6(0-15)	2(0-7)
	FRI ³	0					
11	8	Major et al.	5	31(0-58)	69(42-100)		
		FRI ²	6	19(0-46)	64(40-89)	15(0-31)	2(0-7)
		FRI ³	1	10	87	0	3
11	10	Major et al. l	4	9(0-35)	91(65-100)	· ·	400 mg
	_	FRI ²	7	9(1-18)	78(44-94)	11(0-39)	2(0-6)
		FRI ³	2	20(10-30)	59(58-60)	17(4-30)	4(0-8)

¹Mixing proportion estimates are average corrected estimates 1966-1972, for all ocean age groups of immature chinook. Asia estimates were calculated by subtracting the corrected western Alaska estimate from one. Some erroneous values in Major et al. (1977b) were corrected by Major (pers. comm., October 1983).

²Mixing proportion estimates are average estimates, 1975-1981, for immature age 1.2 chinook.

³Mixing proportion estimates are average estimates 1975-1981, for immature age 1.3 chinook.

Table 20. Estimates of the mothership fishery catches (in thousands of fish) of immature chinook salmon by region of origin.

	Sub-		gion o	f Orig	in	Total	Total	Unallo-
Year	area	Asia	West	Cent	SEBC	immatures	matures	cated
1975	2	_	_	_	_	+	+	
17/3	4	0	12	4	0	16	+	
	6	6	25	i	+	32	+	
	8	3	11	ō	1	. 15	+	
	10	4	44	i	ō	49	1	
	1	1	+	3	1	5	1	
		1	1	2	+	4	1	
	3 5	2	+	5	+	7	1	
	7	1	2	9	+	12	3	
	9	+	2	3	1	$\frac{6}{147}$	· +	
	Total	18	97	28	3	147	8	7
1976	2	1	1	+	0	2 .	+	
	4	0	12	4	0	16	2	
	6	8	11	3	0	22	1	
	8	7	12	4	0	23	+	
	10	10	42	6	+	58	1	
	1	+	3	33	+	36	1	
	3	3	5	13	+	21	4	
	5 7	+	1	5	1	7	1	
		1	15	36	0	52	3	
	9	8	6	11	1	26	1	
	Total	38	108	115	2	263	14	8
1977	6	+	2	+	+	2	0	
	8	5	6	1	1	13	+	
	10	5	34	+	+	39	+	
	3	+	1	2	0	3	1	-
	5	3	2	6	+	11	5 3	
	7	3	3	6	0	12	3	
	9	1	+	1	0	<u>2</u> 82	+	
	Total	17	48	16	1	82	10	1
1978	6	1	1	+	+	2	+	
	8	1	5	+	+	6	+	
	10	+	2	+	+	2	+	
	3	+	1	1	+	2	<u>+</u>	
	5	19	25	28	12	84	7	
	Total	21	33	30	12	96	7	2

Table 20. Estimate of the mothership fishery catches (in thousands of fish) of immature chinook salmon by region of origin - cont'd.

	Sub-	Re	gion o	f Orig	in	Total	Total	Unallo-
Year	area	Asia	West	Cent	SEBC	immatures	matures	cated
1979	6	1	2	+	+	3	+	
-	8	+	25	10	0	35	+	
	10	+	26	6	0	32	+	
	3	+	+	+	+	+	+	
	5	16	13	17	+	46	8	
	Total	17	66	33	+	117	9	+
1980	6	2	11	+	1	14	+	
	. 8	22	174	1	+	197	1	
	10	21	197	+	+	218	+	
	3	+	3	5	+	8	+	
	5	31	33	157	33	253	11	
	Total	76-	418	163	34	690	12	2
1981	6	+	+	+	+	+	+	
	8	1	7	3	+	11	+	
	10	2	4	3	0	9	0	
	3	+	+	+	+	+	+	
	5	20	18	21	3	62	4	
	Total	23	29	27	4	83	4	1

^{+ =} Less than 500 fish.

Table 21. Average regional stock compositions in the mothership fishery for the Bering Sea and North Pacific areas, 1975-77 and 1978-81.

	Average composition (%)								
	1975	5-77	1978-81						
Region of origin	Bering Sea	N. Pacific	Bering Sea	N. Pacific					
Asia	17	16	12	25					
Western Alaska	75	19	75	25					
Central Alaska	7	62	13	42					
SE Alaska-									
British Columbia	1	3	0	8					

Table 24. Estimates of the inshore and combined (inshore run plus high seas catch) runs of chinook salmon to western Alaska, 1965-1983 (thousands of fish).

	We	stern Alask	a coasta	1 runs		Apportioned	
	Bristol	Kuskokwim	Yukon	Total	Total	high seas	Combined
Year	Bay	region	region	run	catch	catch	run
1965	235	140	170	545	309	165	710
66	158	200	210	568	277	121	689
67	215	230	170	615	363	137	752
68	222	180	230	632	314	133	765
69	200	240	190	630	352	165	795
70	239	270	160	669	468	346	1015
71	192	200	150	542	349	363	905
72	121	200	200	521	287	280	801
73	110	180	170	460	251	170	630
74	155	120	160	435	237	221	656
75	135	101	120	356	204	174	530
76	235	144	146	525	335	178	703
77	245	176	193	614	381	130	744
78	416	191	247	854	446	148	1002
79	374	206	294	874	510	105	979
80	334	197	380	911	459	. 122	1033
81	491	272	410	1173	618	192	1365
82	524	245	223	992	611	298	1290
83	465	237	258	960	571	117	1077
84	(282)*	-	-	-	-	75	-

^{*}Preliminary estimate based on recent information provided by $\mathtt{ADF\&G.}$

Table 25. Escapement-return statistics for the Nushagak chinook salmon stock (numbers in thousands of fish).

Brood			<u>In</u>		return	by age			High seas	fishing
year	Catch	Escape.	4	5	6	7	Total	R/E	WA catch ³	CPUE ⁴
1958	87	751	8	13	57	13	91	1.2	99	
59	54	47	42	39	71	1	153	3.3	66	7
60	81	70	104	61	43	8	216	3.1	219	15
61	65	55	22	35 -	72	14	143	2.6	126	9
62	65	55	23	47	75	7	152	2.8	130	9
63	50	43	38	52	58	3	151	3.5	93	8 17
64	112	95	14	26	35	1	76	.8	262	17
65	9 0	77	32	88	79	4	203	2.6	384	31
66	62	40	18	30	39	7	94	2.4	465	16
67	100	65	7	18	46	25	96	1.5	159	8
68	85	70	14	18	67	8	107	1.5	209	9
69	88	35	1	16	31	4	52	1.5	87	4
70	94	50	2	57	74	6	1 39	2.8	244	28
71	87	30	3	55	92	20	170	5.7	134	8
72	5 0	25	35	53	130	13	231	9.2	155	6
73	37	35	4	79	111	13	207	5.9	83	4
74	40	70	26	44	53	4	127	1.8	86	6
75	29	70	91	144	129	14	378	5.4	10 9	20
76	68	100	7	111	162	24	304	3.0	464	77
77	90	65	113	164	260	18	555	8.5	77	5
78	125	130	19	19	65				85	8
79	164	95	3	66					74	4
80	76	141	2							
81	207	150								
82	212	147								
83	144	162						~~		
842	66	85								

 $^{^{1}\}text{Escapements}$ for 1958-1965 were estimated from the catch and an average rate of exploitation (.54).

2Preliminary data from W. Bucher (ADF&G).

3High seas catch of western Alaska fish, estimated in present study.

4Average of July CPUE in sub-areas 8 and 10 in brood year +4.

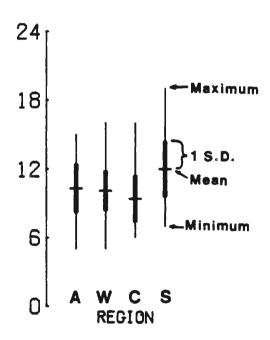
Table 26. Average annual catches (in thousands) of the mothership fishery in years when effort was greater than 1,000 tans, by sub-area and period, 1956-1977 and 1978-83.

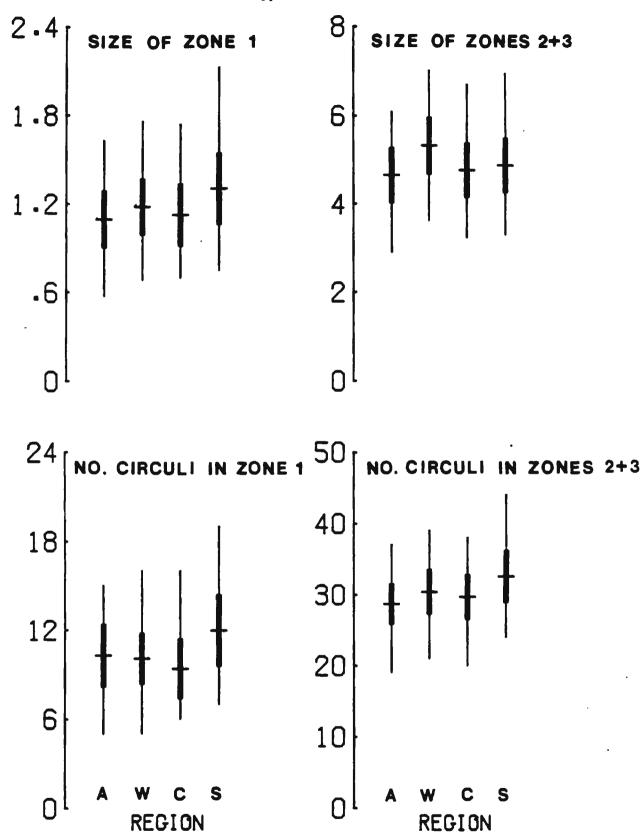
		Catch								
Sub-		June		June		July 1-31				
area	Species	5 6- 77	78-83	56-77	78-83	56-77	78-83			
37 -L										
North Pacific			ž.							
5	Sockeye	577	541	112	285	192	961			
,	Chum	734	897	141	472	296	910			
	Pink	495	615	214	520	164	951			
	Coho	2	2	8	3	396	593			
	Chinook	4	8	1	7	12	86			
	CHIHOOK	4	0	1	′	12	00			
7	Sockeye	245	0	59	0	110	0			
-	Chum	311	0	126	Ö	165	0			
	Pink	301	Ō	100	0	60	0			
	Coho	+	0	19	Ö	310	0			
	Chinook	2	0	1	0	14	0			
	0			-						
9	Sockeye	294	0	49	0	134	0			
	Chum	193	0	160	0	96	0			
	Pink	109	0	64	0	28	0			
	Coho	+	0	1	0	178	0			
	Chinook	1	0	2	0	10	0			
Bering										
Sea										
6	Sockeye	20	(25)	26	8	145	27			
	Chum	53	(24)	100	42	438	102			
	Pink	102	(45)	122	50	606	59			
	Coho	0	(0)	+	+	1	+			
	Chinook	. 2	(+)	8	1	15	3			
8	Sockeye	186	0	79	11	99	58			
J	Chum	156	Ö	185	36	868	323			
	Pink	134	0	112	55	346	160			
	Coho	+	Ö	+	0	+	+			
	Chinook	3	ő	14	3	39	42			
10	Sockeye	435	0	253	8	104	53			
10	Chum	171	0	313	28	1217	277			
	Pink	83	0	198	32	324	139			
	Coho	0	0	+	0	+	1			
	Cono Chinook	9	0	28	2	36	48			
	CHIHOOK	7	<u> </u>	20		70	70			

^{+ =} less than 500 fish.

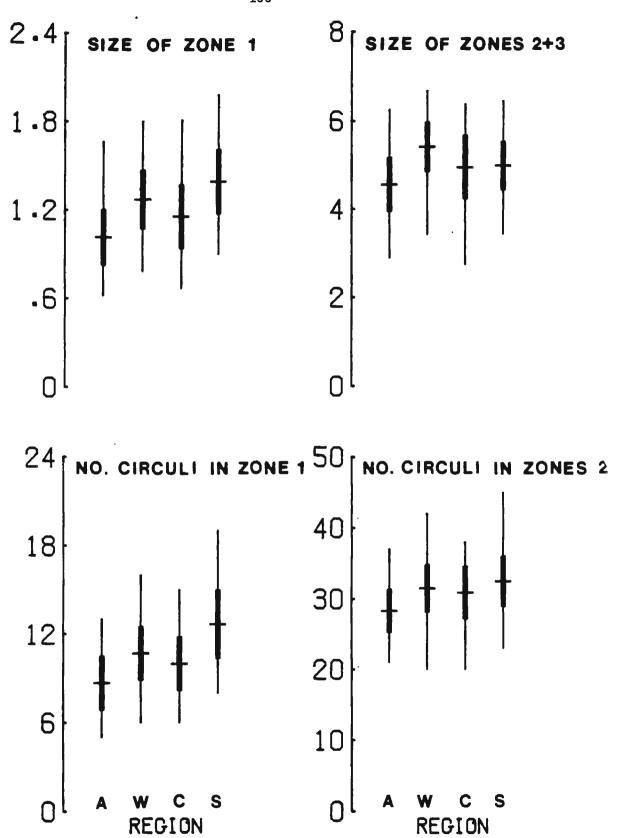
Table 27. Average annual CPUE (catch per tan x 100, for years when effort was greater than 1,000 tans) of the mothership fishery by sub-area and period, 1956-77 and 1978-83.

					atch		
Sub-		June	1-20		21-30		
area	Species	56-77	78-83	56-77	78-83	56-77	78-83
North Pacific							
5	Sockeye	116	58	98	62	69	102
	Chum	124	95	116	107	119	92
	Pink	99	64	153	117	88	102
	Coho	+	+	7	ì	125	61
-	Chinook	ī	1	i	2	4	9
7	Sockeye	126	-	68	***	58	-
	Chum	125	-	116	~	112	-
	Pink	115	-	89	-	43	-
	Coho	+	469	26	-	185	-
	Chinook	1	-	2	e#O	8	-
9	Sockeye	121	-	62	en _D	94	-
	Chum	103	•••	146	-	125	-
	Pink	71	43	75	-	27	-
	Coho	+	e Common III	3	-	136	-
	Chinook	1	-	1	~	7	-
Bering							
Sea							
6	Sockeye	83	(35)	31	32	58	48
	Chum	79	(96)	118	105	228	92
	Pink	115	(180)	191	126	233	112
	Coho	0	0	+	0	+	+
	Chinook	3	(3)	7	5	7	4
8	Sockeye	112	-	52	29	39	33
	Chum	121	-	133	79	275	176
	Pink	80	-	107	113	162	107
	Coho	+	4900	0	0	+	+
	Chinook	5	-	9	17	12	18
10	Sockeye	150	-	82	32	35	31
	Chum	84	~	133	96	323	176
	Pink	63	-	83	126	97	104
	Coho	0	-	0	0	+	+
	Chinook	4	-	10	12	9	22

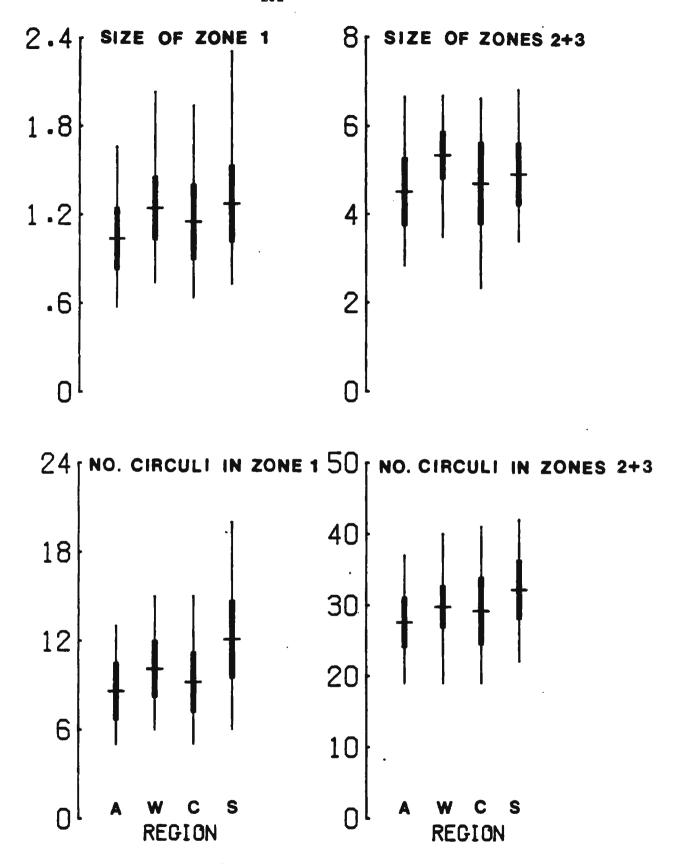

⁺ = less than .005 fish/tan.

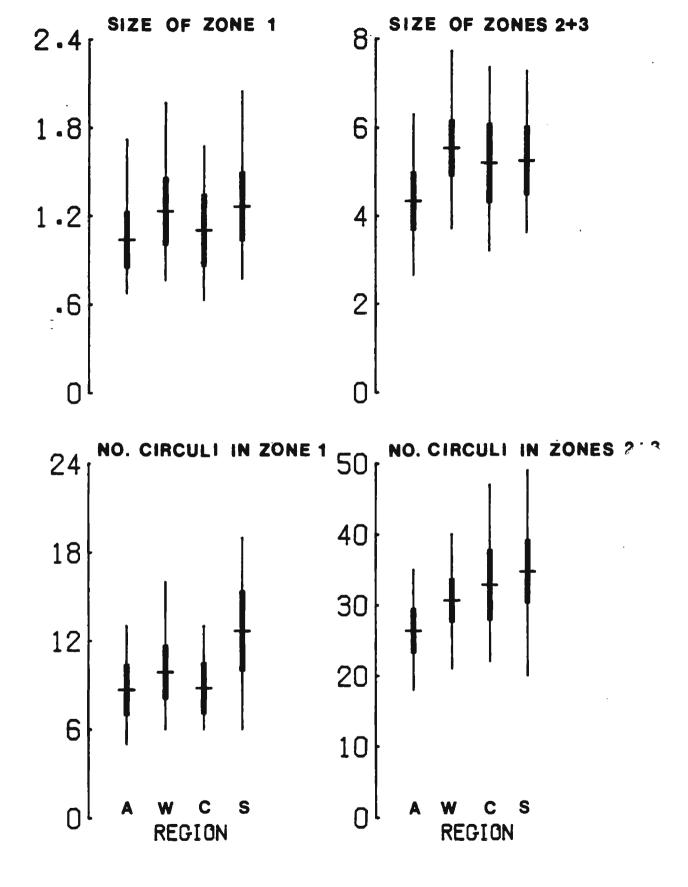

•			
,			
·			
	•		
ъ			
		•	

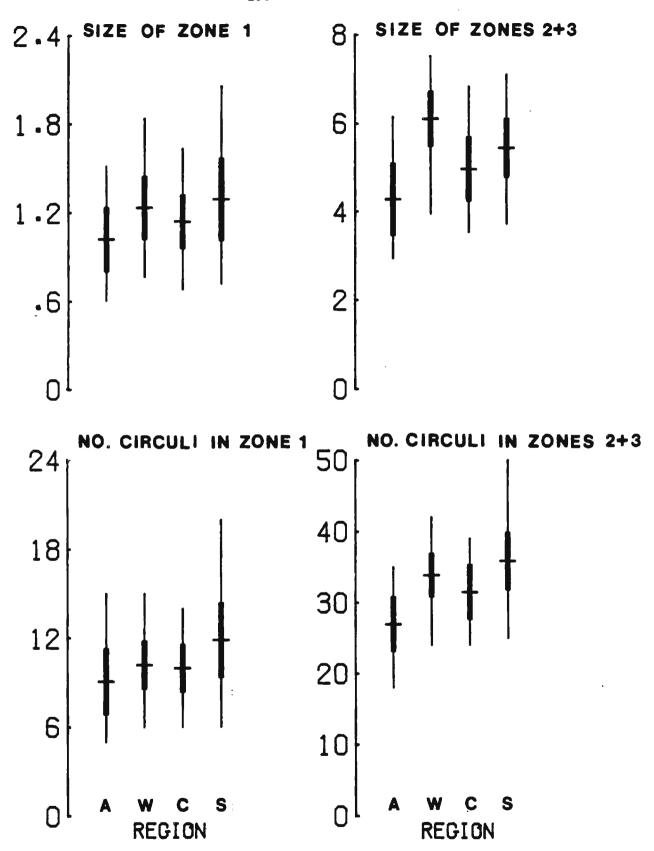
APPENDIX FIGURES 1-7

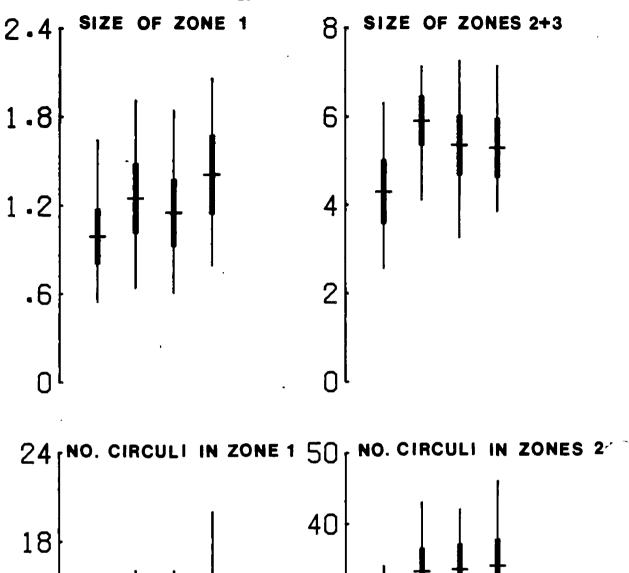

Plots of basic statistics for four scale characters for four regional standards (A = Asia, W = Western Alaska, C = Central Alaska, S = Southeast Alaska and British Columbia) used to classify immature age 1.2 chinook. For each plot the horizontal segment shows the mean, the bold bar shows one standard deviation on each side of the mean, and the thin line shows the range of values. The ordinates for the two size characters are in inches at 104%.

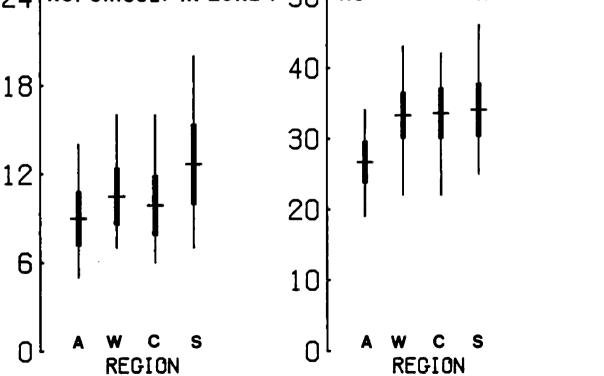
<u>Key</u>



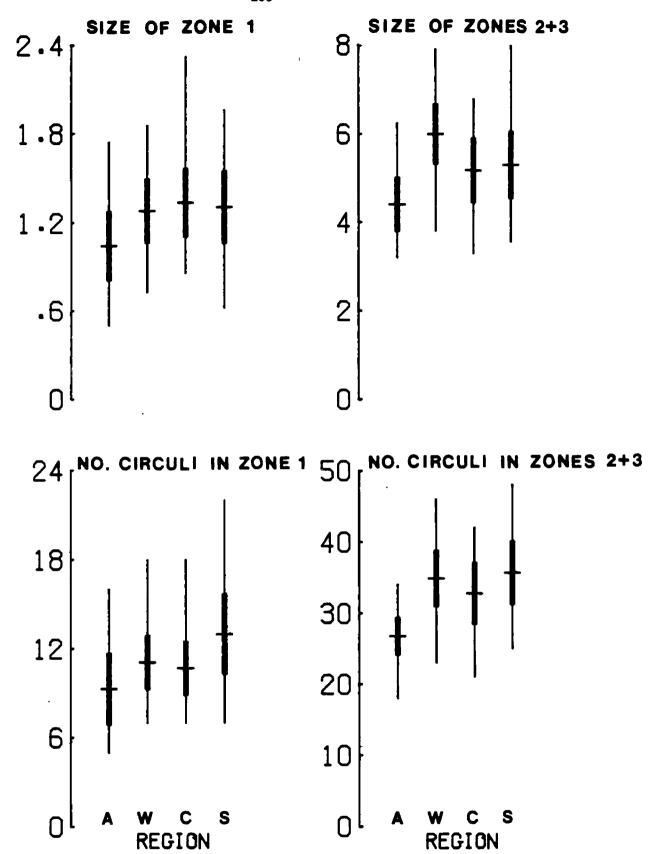

Appendix Figure 1. Plots of scale characters for brood year 1971A standards (used to classify age 1.2 chinook sampled in 1975).


Appendix Figure 2. Plots of scale characters for brood year 1972A standards (used to classify age 1.2 chinook sampled in 1976).


Appendix Figure 3. Plots of scale characters for brood year 1973A standards (used to classify age 1.2 chinook sampled in 1977).



Appendix Figure 4. Plots of scale characters for brood year 1974A standards (used to classify age 1.2 chinook sampled in 1978).



Appendix Figure 5. Plots of scale characters for brood year 1975A standards (used to classify age 1.2 chinook sampled in 1979).

Appendix Figure 6. Plots of scale characters for brood year 1976A standards (used to classify age 1.2 chinook sampled in 1980).

Appendix Figure 7. Plots of scale characters for brood year 1977 standards (used to classify age 1.2 chinook sampled in 1981).

		4 - 4 ,		
,				1000
,				
		•		
	•		•	
		-	٠	
	•			

Appendix Table Al. Estimated age and maturity composition of 1975 Japanese mothership fishery chinook catch. For month/sub-area strata represented by sufficient biological data ($n \ge 25$), the table shows the age/maturity composition of the total sample available, and the resulting allocation of the reported mothership catch, in numbers of fish.

HTROM		SAMPLE/		-	TUR	-					_								
		CATCH	T.1	T.2	T.3	T.4+	TOTAL	1.1	0.2	1.2	2.2	1.2	0.3	1.3	2.3	T.3	1.4+	TOTAL	TOTAL
HAY	ALL	6673	(UN	ALL DC A	TED)														
JUNE	1	SAMPLE - 506	_	.3958 200						.3578 181				.1533 70			.0000	.9111	45
JUNE	2	87	CUN	ALL OC A	TED)														0
JUNE	3	SAMPLE = 2640								.5117 1351				.0493 130		.0493 130			101
JUNE	4	798	(UN	ALL DC A	TED)														0
JUNE	5	SAMPLE - 5972					.1946 1162			•7502 4480				.0466 279				.8054 4010	370
JUNE	6	SAMPLE = 225	.0000						.0075 2			.8509 191						.9319 210	235
JUNE	7	SAMPLE- 7733			.0440 340		.3516 2720			.5579 4314		.5635 4358		.0773 598			.0000	.6482 5013	307
JUNE		SAMPLE- 2139	.0000	_			.0509 109		.0060		.0119	.8542 18 2 7		.0076 107				.9491 2030	373
JUNE	9	SAMPLE- 6197			.0240 148		.0636 520			.7949 4926				.1091 676		·1213		.9162 5677	167
JUNE	10	SAMPLE- 3777			.0119		.0476 180			.7553 2053				.1529 570		.1529 578	.0000		160
JUNE	ALL	30074		4169 LLOCAT		346	6047	201	14	20083	216	20314	0	2543	85	2627	0	23142	

SAMPLE 35 293 113 90 142 466 154 296 101 7121 32056 .9936 .9779 1.0000 2393 .0000-1.0000 54 146419 123270 .0000 0000 9000 0000• . 0025 32 0000 0000 40 •0040 •13 2344 .0646 .0654 .0123 396 .0315 224 .0130 .0471 .0580 1669 .0194 4371 1.3 00000 0000. 0000 0000 0000 0000 .0046 0000 0000 109 24 2.3 .0654 .0123 .0580 2344 .0600 318 .0194 46 .0315 224 0000 .0471 4145 6688 1.3 0000 0000. 0000 0000 0000 0000. 0000. 0000. 0000 0 0.3 .9041 .9649 .6408 .9391 .9203 132 .9243 .8076 .9802 6336 561 137013 .8898 116700 1.2 0000 0000 .0092 120 0000 0000 345 .0067 36 .0060 18 .0053 .0000 171 2.5 .9298 .9243 .0010 .8920 1533 .9749 .9203 .9649 .6699 6336 32 136420 16 116337 1.7 0000 0000 0000 0000 0000 0000 0000 .0000 0.0000 .3398 .0000 0 0 813 0 .0305 .0000 .0060 90 09 ر د د 0000 .0787 .0030 .0217 .0075 .0000 .0117 .0913 .0323 2154 2354 . 0000-3 •0064 84 .0135 .0221 0000.0 0000. 1868 7916 TOTAL 0000 0000 0000 0000. 0000 0000 .0046 370 1.4. 54 54 .0034 0000 0000• 0000. 0000 0000 0000 0000 A O L V H .0730 .0000 307 .0000 350 1337 157 UNALLOCATED) .004 5506 1036 UNALLOCATEO! T • 3 (UNALL OCATED! 0000 ,0038 1900. 0000 9900. .0221 0000 .0000 .0305 0 90 T . 2 0000 0000 .0038 .0137 0000 .0034 SAMPLE .0000 2393 0 0000 1004 T.1 5 AMPL E-52 96 5AMPLE-13078 SAMPLE-46425 SAMPLE - 2942 SAMPLE-161908 SAMPLE SAMPLE-SAMPLE-125161 2 15447 MONTH SUB- SAMPLE/ CATCH ALL-SEASON TOTAL • ALL 'n Φ 10 TOP TULY JULY JULY 777 JULY TULY 7106 777 JULY זחר

Appendix Table Al. Continued

Appendix Table A2. Estimated age and maturity composition of 1976 Japanese mothership fishery chinook catch. For month/sub-area strata represented by sufficient biological data ($n \ge 25$), the table shows the age/maturity composition of the total sample available, and the resulting allocation of the reported mothership catch, in numbers of fish.

HONTH		SAMPLE/				I N G					_	M M	-					·	
		CATCH	T.1	1.2	1.3	T.4+	TOTAL	T.1	0.2	1.2	2.2	T.2	0.3	1.3	2.3	T.3		TOTAL	TOTAL SAMPLE
MAY	ALL	8122	(UN	ALL DC A1	(O31														
JUNE	1	102	· CUN	ALL DC AT	(dar														23
JUNE	2	603	(UN	ALL OC A	TED)														0
JUNE	3	SAMPLE- 10243				.0333 341				.6275 6427		.6275 6427		•0392 402		•0392 402		.6667 6829	30
JUNE	4	SAMPLE- 8034			.0541 435			-	.0000		.0165 149	.6485 5210	.0000	-0676 543		.0676 543	.0000	.7160 5753	01
3H UL	5	SAMPLE- 3063				.0414 127	•2208 676	.0078 24	.0000	.5532 1695	.0000	.5532 1695	.0000	.2026	.0000	.2026	.0156 48	.7792 2387	154
JUNE	6	SAMPLE = 6942			.0199		•1155 802			.7734 5369		.7897 5482		.0948 658			.0000	.8845 6140	251
JUNE	7	SAMPLE- 10562		.1818 1920			-2361 2494		.0095 101		.0095 101	.6637 7010		.0962 1037		.0982 1037	.0020 21	.7639 8068	576
JU NE	8	SAMPLE -		.0290 164			.0377 213			.8389 4752		.6540 4837		.1008 571		.1052	.0032	.9623 5451	349
JUNE	9	SAMPLE- BO35	.0084	.0759 610				.0000				.0260 6643		.0805 647		.0805 647	.0000	.9073 7290	151
JUNE	10	SAMPLE- 20436		.0198		.0000			.0000	.8308 16979	.0060 122	.8368 17101		.1253 2561		-1372 2805	.0033 68	.9774 19974	354
JUNE	ALL	73764 1 765		7283 LLOCATI	2463 ED)	763	11088	24	101	53735		54406		7038		7307		61891	

TOTAL SAMPLE 165 210 165 436 298 36 426 789 0 1.0000 37682 .9952 .9977 .9758 TOTAL 155 261835 0000 0000 .0000 0000. 0000 0000 .0000 .0000 .0392 .0317 0000. .0550 .0319 .1213 2105 1703 .1056 456 12481 122 19788 0000 0000 0003. 0000. 0000 0000. 0000. 0000 0000 .0369 .0317 0000 0000. .0550. 888 .0319 .1056 .1161 2013 .0890 11849 323 16667 0000 0000 0000 0000 .0023 85 0000 0000. 0000. .0053 92 176 0.3 .9169 13421 .9326 34158 .9565 1.0000 .9208 .9420 .8763 .9110 .6893 186033 4375 240438 1.2 .0225 329 .0750 365 0000. 0000 3805 .0024 86 .0957 .0542 .0220 .0199 2.2 .9420 .9232 33812 13091 •8609 9036 4506 .8666 .8536 14805 .9110 .8694 235703 161968 1.2 0000 .0071 259 0000 0000. 0000. 0000 0000 0000 360 0000. 259 0.2 .0212 310 0000. .0015 0000° 0000. .0213 0000 0000. 1430 1453 1.1 .0266 975 .0302 0.0000 0000.0 391 .0023 0,000,0 .0048 13238 TOTAL 0000 0000 0000 763 0000 0000 0000 0000. 0000 .0000 1.4+ .0112 410 0000 0000 00000 1100. 0000° .0023 0000 0000• 562 915 8301 3045 UNALL DCATED 1 1.3 (UNALL DCATED) .0126 0000 .0201 295 0000. 0000. 0000. 0000 0000.0000. .0162 261 1.2 0000 .0028 .0101 0000. 0000. 0000. 0000• 1:1 SANPLE-37769 SAMPLE. 17345 284882 9809 AL L-SEASON TOTAL JULY 101 7105 JULY TINE JULY JULY 7705 J.71.1 7105

Appendix Table A2. Continued

Appendix Table A3. Estimated age and maturity composition of 1977 Japanese mothership fishery chinook catch. For month/sub-area strata represented by sufficient biological data ($n \ge 25$), the table shows the age/maturity composition of the total sample available, and the resulting allocation of the reported mothership catch, in numbers of fish.

	SUB-	SAMPLE/		M A	TUR	I N G					1	M M	A T	UR					
		CATCH	T.1	T.2	1.3	T.4+	TOTAL	T.1	0.2	1.2	2.2	1.2	0.3	1.3	2.3	T.3	T.4+	TOTAL	SAMPLE
MAY	ALL	1064	(UN)	ALL DC A	TED)														
JUNE	1	- 13	(UN	ALL OC A	TED)														•
JUNE	3	SAMPLE- 1026	•1099 113			-1648 169				.1143 117		•1143 117		_	_	.1429 147	_	.2057 293	42
JUNE	5	SAMPLE= 7924		_	.0853 676					.2289 1814				.1374 1088		.1374 1088			452
JUNE	7	SAMPLE• 7538					.4273 3221		.0022 17			.4102 3092		.1612 1215		.1612 1215		•5727 4317	976
JUNE	8	SAMPLE - 2340					.0711 166					.5385 1260		.3755 879		.3755 879		.9289 2174	293
JUNE	9	SAMPLE • 2516		.0405 102				.0000	.0118	.7058 1776	.0000	.7176 1805		.2081 524		.2081 524	.0000	.9257 2329	148
JUNE	10	SAMPLE• 9966		.0105 105				.0000				.7770 7743		.2051 2044		· 2051 2044			. 206
JUNE	ALL (31323 13		6420 LLOCAT		1106	9425	33	46	15770	17	15833	0	5096	0	5896	123	21005	
JULY	1	163	(UN	ALL OC A	TED)														14
JULY	3	SAMPLE= 2574		.0278 71	.0000	.0000	.0278 71	.0278 71	.0000	.8750 2252	.0000	.0750 22 5 2	.0000	.0694 179	.0000	-0694 179	.0000 6		72
JULY	5	SAMPLE- 8182		.0341			.0366 299				.0167 136	.8973 7342		.0620 507		•0620 507		.9634 7883	547
JOLY	6	SAMPLE- 1506					0.0000							.0455 72	.0000	• 0455 72	.0000 6	1.0000 1506	45

101

660

217

229

TOTAL 29266 60045 .9996 .9907 TOTAL .9908 0000 0000 123 .8811 .0000 .1087 .0000 .1087 .0000 9536 0 1117 0 0 .0500 .1294 .0311 2995 0 11891 1.3 0000 0000 .9406 .0000 .0500 .0000 11 0 1 0 .1248 .0000 .0311 5661 134 11757 .0045 134 0.3 1727 .8624 53728 19669 325 •6000 0000. 0000 101 305 .9406 .0000 11 0 3.2 .8514 .8573 .9545 53031 68801 438 .0051 .0092 .0000 .0044 .0057 .0198 48 62 214 0000 0000 6000 392 .0026 355 325 .0056 2000. 658 541 7017 1419 1106 10083 UNALLOCATED! **TOTAL** 0000 + 4 • 1 SAMPLE .0000 .0092 .0000 .0000 8096 0 75 0 0 SAMPLE .. 0000 . 0093 .0000 .0000 12 0 0 0 .0042 .0000 123 .0000 0 61 597 UNALLOCATED) 1.2 SAMPLE. .0014 29430 41 93253 1240 60866 163 MONTH SUB- SAMPLE/ ARFA CATCH ALL-SEASON TOTAL • 10 JULY ALL JULY **JULY** JULY 7115

Appendix Table A3. Continued.

Appendix Table A4. Estimated age and maturity composition of 1978 Japanese mothership fishery chinook catch. For month/sub-area strata represented by sufficient biological data ($n \ge 25$), the table shows the age/maturity composition of the total sample available, and the resulting allocation of the reported mothership catch, in numbers of fish.

IONTH		SAMPLE/			TUR						_	н н	A T	U R	£ \$			·	
		CATCH	T.1	T.2	T.3	T.4+	TOTAL	T.1	0.2	1.2	2.2	T.2				T.3		TOTAL	TOTAL SAMPLI
JUNE	3	638	(UN	ALL DC A	TED)														16
JUNE	5	SAMPLE- 19747					• 2856 4498			•5719 9006		•5758 9067		•1327 2090		.1339 2108		.7144 11249	1425
JUNE	6	SAMPLE = 2367		.0566 134			.0566 134		.0000	.9041 2140		.9041 2140						.9434 2233	53
JUNE	8	SAMPLE = 6368	•	.0164 104			.0164 104		.0000								.0000	- : - : -	61
JUNE	10	SAMPLE- 100	.0000	.0000	.0256	.0000			.0000	.9457 95									39
IUNE		25220 638		3642 LLOCATI		182	4739	37	20	17022	41	17083	0	2665	19	2686	37	19843	
IULY	3	SAMPLE- 2068	.0000	_			.0365 75		.0000			.9068 1875		.0567 117		.0567 117		.9635 1993	137
IULY	5	SAMPLE- 74781		.0246 1841						.9147 68403				.0481 3593		.0481 3593		.9697 72512	1780
ULY	6	193	(UN	ALL DC AT	TED)														. 0
IULY	•	695	(UN	ALL OC A	TED)														23
WLY	10	SAMPLE- 1669	.0000				.0041		•0000	.8657 1445		.8620 1472		•0285 47	.0000		.0047		241
JULY	ALL (79406 888		1923 LLOCATI	300 ED)	86	2351	457	74	71699	126	71898	0	3758	0	3758	54	76167	
LL-SI TOTAL		104626 1526	-	5565 LLOCATI	1117 ED)	268	7090	494	94	88720	166	86981	0	6423	19	6444	91	96010	

Appendix Table A5. Estimated age and maturity composition of 1979 Japanese mothership fishery chinook catch. For month/sub-area strata represented by sufficient biological data ($n \ge 25$), the table shows the age/maturity composition of the total sample available, and the resulting allocation of the reported mothership catch, in numbers of fish.

HTHO		SAMPLE/			TUP	-						H H	A T	U R	-				TOTA
		CATCH								1.2	•		0.3	1.3					SAMPL
IUNE	3	SAMPLE- 582		.4204 245			.5294 308		.0000					.1513 88			.0000	.4706 274	68
IUNE	5	SAMPLE= 20172			.0493 995	-				.4629 9338				.1467 2959		.1467 2959		.6214 12534	861
IUNE -	6	53	(UN	ALL DC A	TED)														0
JUNE	8	12	(UN	ALL OC A	TED)														0
JUNE	10	168	(UN	ALL DC A	TED)														0
JUNE	ALL	20987 (233		6592 LLOCATI	1058 ED)	108	7946	140	6	9524	42	9566	0	3047	0	3047	56	12808	
IULY	3	SAMPLE- 146								.7862 115				.1729 25			.0000	.9853 144	68
MrA	5	SAMPLE - 33756		.0127 430		.0000		.0079 267		.8919 30106				-0730 2466		.0730 2466		.9851 33255	604
IULY	6	SAMPLE- 3386	.0000	.0000	_	.0000		.0000		1.0000		.1.0000 3388	.0000						64
INTA		SAMPLE- 35382	.0000	-						.9598 33958				.0306 1081		.0306 1081			401
JULY	10	SAMPLE - 32497		.0044 143			.0066 215			.9589 31160				-0123 401			.0000	.9934 32282	453
IULY		105169		664 LLDCAT	_	72	807	948	0	98727	576	99303	0	3973	0	3973	98	104362	
ALL-S Tota	EASON L	126156 (233		7255 LLOCAT	1058 ED)	179	8753	1127	0	108251	618	108869	0	7020	0	7020	154	117170	

Appendix Table A6. Estimated age and maturity composition of 1980 Japanese mothership fishery chinook catch. For month/sub-area strata represented by sufficient biological data ($n \ge 25$), the table shows the age/maturity composition of the total sample available, and the resulting allocation of the reported mothership catch, in numbers of fish.

HTMON		SAMPLE/		M A	TUR	I N G					1	H H	A T	U R	E S				
		CATCH	T.1	1.2	T.3	T.4+	TOTAL	T.1	0.2	1.2	2.2	T.2	0.3	1.3	2.3	T.3	T.4+	TOTAL	SAMPLE
JUNE	3	770	(UN/	ALL DÇA	TED)														19
JUNE	5	SAMPLE - 28107								.4754 13362								.6707 18851	1321
JUNE	6	1549	(UN/	ALL OCA	TED)														0
JUNE	8	SAMPLE- 11981																.9667 11582	30
JUNE	10	3300	(UN/	ALL OC A	TED)														0
JUNE	ALL	45707 5619		6136 LOCAT		140	9655	25	1007	22442	314	23763	235	6411	0	6646	0	30433	
JULY	3	SAMPLE • 7452	•0000	•0000	.0000	.0000	.0000	.0000	.0000	.9000 6707	.0000	.9000 6707	.0000 Ô	.1000 745	.0000	.1000 745	.0000	1.0000 7452	107
JULY	5	SAMPLE- 235250	.0000	.0050 1180	.0006	.0000	.0056 1328	.0006 144	.0317 7456	.9314 219117	.0123 2006	.9754 229460	.0000	.0184 4319	.0000	.0184 4319	.0000	.9944 233922	1772
JULY	6	SAMPLE- 14329		.0109 157						.8498 12177						.0929 1331	.0000	.9854 14120	274
JULY	8	SAMPLE- 186218	.0000	.0047 877	.0000	.0000	.0047 877	.0040 748	.0267 4967	.8642 160926	.0107 1987	.9015 167879	.0116 2166	.0768 14297	.0000	.0884 16464	•0013 249	.9953 185341	849
JULY	10	SAMPLE- 214842	•0000	.0000	.0000	•0000	.0017 364	.0096 2058	.0159 3419	.9150 196588	.0080 1709	.9389 201716	•0000	.0479 10292	.0000	.0479 10292	•0019 412	.9983 214478	590
JULY		658091		2214 LOCAT		0	2778	3008	15953	595515	7025	618493	2299	30651	0	33150	661	655313	
ALL-SI Total		703796 (5619		10350 LOCAT		140	12433	3033	16960	617957	7339	642256	2534	37262	0	39796	661	685746	

NONTH		SAMPLE/				I N G			_		_	H H			E S				
		CATCH				-			-	1.2					2.3	T.3	_ :	TOTAL	TOTAL Sample
JUNE	3	58	(UN	ALL OC A	TED)														13
JUNE	5	SAMPLE = 8943								.4230 3783				.1715 1534		-1715 1534		* : - : -	541
JUNE	6	58	(UN	ALL DC A	TED)														0
JUNE	8	26	(UN/	ALL DC A	TEDI														0
JUNE	ALL	9085 142		2642 LLOCAT		144	3504	20	34	3783	68	3885	0	1534	0	1534	0	5439	
InfA	3	421	(UN	ALL OCA	TEDI														14
JULY	5	SAMPLE - 57315	•		.0018					.9237 52944				.0412 2360		·0412 2360		.9903 56759	1134
JULY	6	417	(UN	ALL OC A	TEDI														0
IOLY	8	SAMPLE- 10953			•0020					.7982 8742				.1470 1610		.152C 1665		.9961 10910	507
JULY	10	SAMPLE - 9460		.0000		-				.8001 7569		.0387 7934		.1548 1465		.1548 1465		1.0000 9460	333
JULY	ALL	78566 (838	_	426 LLOCAT	123 E0)	51	599	561	48	69255	1744	71047	56	5435	0	5490	31	77129	
ALL-SI TOTAI		87651 (980		3068 LLOCAT		194	4104	581	82	73039	1811	74932	56	6969	0	7024	31	82567	

Appendix Table B1. Estimated age and maturity composition of 1975 Japanese landbased driftnet fishery chinook catch. For month/sub-area strata represented by sufficient biological data ($n \ge 25$), the table shows the age/maturity composition of the total sample available, and the resulting allocation of the reported mothership catch, in numbers of fish.

HTHOM		SAMPLE/				1 N 6													TOTAL
	_	CATCH	T.1	T.2	T.3	T.4+	TOTAL	T.1	0.2	1.7	2.2	T.2	0.3	1.3	2.3	1.3	T.4+	TOTAL	SAMPLE
MAY	11	SAMPLE- 5000		•0554 277		.0970 485				.4771 2386		.4771 2386			.0246 123		.0000		03
HAY	12	SAMPLE- 6000				•1714 1371				.3061 2449		.3061 2449		.4082 3265		.4082 3265			35
MAY	13	SAMPLF= 15000								.7297 10946								1.0000 15000	37
MAY	14	2000	(UN	ALL OCA	TED)														12
MAY	15	1000	(UN	ALL OCA	TEDI														0
MAY		3100 0 (300 0		734 LLOCATI		1856	3671	0	c	15780	0	15780	0	8425	123	8548	0	24329	
JUNE	11	SAMPLE- 8000					.1687 1349			•5920 4736		•5920 4736		.2267 1014		.2267 1614			83
JUNE	12	SAMPLE = 10000		.0125 125			.0125 125		.0000			5668 5668		.1213 1213		.1213 1213			80
JUNE	13	SAMPLE- 3000	-		.0000					.9411 2873				.0515 154		.0515 154			136
JUNE	14	SAMPLE- 1000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.9010 901	.0145 15	•9155 915						1.0000 1000	71
JUNE	15	SAMPLE- 2000	.0000		.0000		_			.8400 1680		.8400 1680		.1333 267					76
JUNE	ALL	24000 (0	225 Unai	-	225 ED)	562	1474	27	n	19902	37	18839	0	3532	27	3559	101	22526	

TOTAL SAMPLE 116 295 126 104 9 3678 67676 1.0000 .0496 .0000 .0496 .0000 1.0000 149 0 149 0 3000 .0000 1.0000 .0000 1.0000 .0000 1.0000 0 7000 101 114732 TOTAL 0000 0000 0 1.4. .0143 .0783 .0169 406 .0654 262 1760 150 13867 T.3 0000 0000 0000 0000 .0143 .0000 514 0 0 2.3 .0783 406 .0654 262 .0169 271 1760 0 13716 1.3 0000 0000 0000 0000 0000 0000 0 0.3 .9043 .9041 .6305 .7857 28286 .9339 .9126 56189 90809 •0000 0000 .0114 .0060 0000. 0000 9 2.2 .9229 29286 .89£4 1791 .9305 .9126 63FB 9456 FFORD 90672 1.2 0000* .0000.0155.0000. .0000 .0174 .0090 0 35 1A .2000 .0000 7200 0 .0000 .0291 .0000 0 204 0 .0000 .0060 42 Ç.2 .1525 9929 9956 T.1 0000 0000 .0305 172 5268 122 TOTAL 0000. 0000 SAMPLE .. 0000 .0000 .0000 .0000 3000 0000 0000 0000 0000 SAMPLF- .0000 .0000 .0000 .0000 36000 SAMPLE ... 0000 .0000 .0000 .0000 .0000 .0000 0 2419 0000.0000.0000. .0000 .0305 .000C 1319 1236 Ç 0 122 UNALLOCATED) (INALLOCATED) 1.2 294 1.1 SAMPLE-**SAMPLE** 16000 SAMPLE-123000 3000 6 RC 00 MONTH SUB- SAMPLF/ ALL-SEASON TOTAL (1 13 13 12 7 ALL JULY TULY 101 JULY JULY **JULY** JULY

Appendix Table Bl. Continued

Appendix Table B2. Estimated age and maturity composition of 1976 Japanese landbased driftnet fishery chinook catch. For month/sub-area strata represented by sufficient biological data ($n \ge 25$), the table shows the age/maturity composition of the total sample available, and the resulting allocation of the reported mothership catch, in numbers of fish.

PONTH		SAMPLE									. 1	P H	A T	U R	F S				
****	_	CATCH	T.1	1.2	T.3	T.4+	TOTAL	T.1	0.7	1.7	2.2	1.2	0.3	1.3	2.3	T.3	T. 4+	TOTAL	TOTAL SAMPLE
MAY	11	SAMPLE= 5056								•25R1 1305						.4032 2039		.6613 3343	62
MAY	12	SAMPLE • 6483				.0267 173				.5930 3844						.2737 1774		.8667 5619	45
MAY	13	SAMPLE = 14765																1.0000 14765	83
MAY	14	4682	CUN	ALL OCA	TED)														5
MAY	15	221	(UN	ALL DÇA	TEDI														1
MAY	ALL	31207 490 3		879 LLOCATI	804 FD)	694	2577	0	0	18210	0	18210	127	5389	0	5517	0	23727	
JUNE	11	SAMPLE= 17142	•0000	.0078 134	.0078 134	.0156 268	•0313 536	0000	.0000	.7934 13600	.0000	.7934 13600	.0000	.1754 3006	.0000	.1754 3006		.9688 16606	126
JUNE	12	SAMPLE - 21199			.0370 785					.685 <i>2</i> 14525						.2778 5889	-	.9630 20414	54
JUNE	13	SAMPLE = 5609								.8302 4557				.1698 952		•1698 952		1.0000 5609	100
JUNE	14	SAMPLE- 1631	.0000	.9000	.0000	.0000	.0000	.0000	•0134 ?2	.0018 1438	•0134 22	.9085 1482	.0000 0	.0915 149	.0000	.0915 149	.0000	1.0000 1631	153
JUNE	15	SAMPLE- 29	•0000	.0000	.0000	.0000	•0000 0	.0000	.0000	•8596 25	•0000	.8596 25	.0000	.1404	.0000	•1404 4	.0000	1.0000	57
JUNE	3	SAMPLE- 994	.0333	-1667 166	-1000 99	.0333	•3333 331	.0000	•0000	.6275 624	•0000		.0000	.0392 39	.0000	• 039 <i>2</i> 39	.0000	.6667 663	30
JUHE		46604		300 LLBCATI	101e ED)	301	1652	0	22	34869	22	34912	0	10040	0	10040	0	44952	

Appendix Table B2. Continued.

HTHO		SAMPLF /			TUP						•	н н		- •			•		
	AKEA	CATCH	7.1							1.?							T.4+		TOTA SARPL
JULY	11	SAMPLE = 7990	.0000	.0000	.0000		.00C0								.0000				200
JULY	12	\$AMPLE= 10564	.cooo	.0000	_	.0000	.0000				.0156 165			.0469 495		•0469 495		1.0000 10564	64
JULY	13	SAMPLE= 20611	.cooo	_	_	_				.8445 24162						.042£ 1217		1.0000 28611	51
JULY	14	SAMPLE= 20483		.0000		_		.C177 363		.9381 10214		.9381 19214		.0442 906		.0442 906	.0000		114
JULY	15	SAMPLE =		.0000	_	.0000		.0568		.n295 162			•0000		.0000	.1136	.0000	1.0000	89
JULY	3	SAMPLE= 27989						.0212	.0000	.4944 25033	.0225	.9169 25663	.0000	.0317 888	.0000		.0000		296
IULY	ALL	95832		564 LLOCATI	0 FD)	0	845	2183	33	P6024	2808	88866	0	3909	0	3909	29	94987	
ALL-S Tota	E A S ON L			1742 LLOCATI	-	1195	5074	2193	55	139103	2830	141988	127	19338	0	19465	29	163666	

Appendix Table B3. Estimated age and maturity composition of 1977 Japanese landbased driftnet fishery chinook catch. For month/sub-area strata represented by sufficient biological data ($n \ge 25$), the table shows the age/maturity composition of the total sample available, and the resulting allocation of the reported mothership catch, in numbers of fish.

ONTH		SAMPLE		PA	TUP	ING					•	р р	-	U P	E 2				
	4464	CATCH 	7.1	T . 2	T.3					1.7				1.3		T.3		TOTAL	TOTAL SAMPLE
IAY	11	3373	1004	LL DC A1	(D)														0
YA	12	756	(UN)	ALL DC AT	(D)														0
TAY	13	275	100/	ALL OC AT	red)														0
TAY	ALL	4404	-	O LOCATI	-	0	0	0	0	0	0	0	0	0	0	0	0	0	
NE	11	SAMPLE- 11428	.0000		.0263 301		•1053 1203	.0000		-3107 3550		.3107 3550		.5716 6533		•5716 6533			95
NE	12	SAMPLE- 12259	•			.0000		.0338 414		.0844 1034		.1688 2069		.6075 7447		.6075 7447		.8438 10344	32
HE	13	SAMPLE- 9908	.0000				.0000		_	.5918 5864	.0000	-5918 5864		.4082 4044	-	.4082 4044	-	1.0000	50
NE	14	SAMPLE- 282	•	.0000	.0000	•0000	.0000	_	.0000	.6741 190		.6741 190	.0000		.0000		_	1.0000	135
NE	ALL	33677		1067 LOCATE	1067 ED)	601	3118	414	0	10639	1034	11673	0	18116	0	10116	356	30759	•

HTHO		SAMPLE/			TUR							M M			E S				
	AK E A	CATCH	T.1		1.3		TOTAL					1.2		1.3	2.3	1.3	T.4+	TOTAL	TOTAL
MLY	11	SAMPLE- 2694		.0000	.0000 C	.0128 35		.0823		.7404 1995		.7404 1995	.0000	•1645 443	.0000	.1645	.0000		78
WLY	12	SAMPLE- 514	•	.0000	.0000	.0000	.0000	.0000	.0000	.9118 469	.0000	.911A 469	-		.0000	.0882 45	.0000		34
IULY	13	SAMPL F = 3666		.0000	.0000	.0000	0000 0	.0000		.4940 3278		.9139 3350			.0000	.0861 316	•0000	1.0000 3666	151
JULY	14	\$AMPLE= 66291	-	.0000	-	•0000	.0000	_	.0000	7 7	.0000	T .	-	.0490 3250	-	.049C 3250		1.0000	102
ULY	15	22907	(UN/	ALL DC A1	(O)														15
IULY	3	SAMPLE- 2745		.0278 76	.0000 C	.0000	•0278 76	.0278 76	.0000	.8750 2402	.0000	.8750 2402		_	.0000	•0694 191	.0000		72
JULY	ALL	98617 (22907		76 LOCATE	-	35	111	296	0	71164	73	71257	0	4244	0	4244	0	75799	
ALL-S TOTA	EASDH L		• -	1143 LDCATE		636	3279	712	0	F1823	1167	82930	0	22360	0	22360	556	106558	

1

Appendix Table B4. Estimated age and maturity composition of 1978 Japanese landbased driftnet fishery chinook catch. For month/sub-area strata represented by sufficient biological data ($n \ge 25$), the table shows the age/maturity composition of the total sample available, and the resulting allocation of the reported mothership catch, in numbers of fish.

HTAD	•	SAMPLF/ CATCH				I N G		•				P M	A T	U R	E 2				70744
			T.1	T.2	T.3	T.4+	TOTAL	T.1	۲.7	1.2	2.2			_				TOTAL	TOTAL
MAY	11	SAMPLE- 9107				-	.2073 1888	_	_	.5436 4950	-	•5662 5156	_	·2265 2063		.2265		•7927 7219	82
MAY	12	SAMPLE = 42027				.0545 2292	.0545 2292			.R404 35320		.8404 35320				.0840 3532		.9455 39735	55
YAN	13	34231	(UNA	LL DC A1	TED)														7
MAY		85365 34231		1062 LDCAT		2410	4180	893	r	40270	206	40476	3532	2063	0	5595	0	46954	
UNE	11	SAMPLE= 12566			.0196 246		•039 <i>2</i> 493			•7937 9974		-7937 9974		.1671 2100		.1671 2100		.9608 12073	51
UNE	12	11347	(UN4	ALL OCA	TEDI														6
UNE	13	SAMPLE- 21571		.0029 63			.0116 251	.0000		.0313 17933		.8343 17997		•1541 3323		.1541 3323		.9884 21320	344
UNE	ALL	45484 11347		309 LDCATI	309 FD)	175	744	0	0	?7 906	64	27970	0	5423	0	5423	0	33393	
ULY	11	1830	(UNA	LL DC A	TED)														. 3
ULY	12	SAMPLE- 7015	.0000		.0000 0		0000	.0000	.0000	.91F4 6442	.0000	.9184 6442		.0816 573	.0000		.0000		51
ULY	13	SAMPLE- B123			.000¢			.0140 113		.9494 7712		.9511 7726		.0349 284	•0000 0			1.0000 6123	573
NFA	ALL	16968 1830	_	O LDCATI	•	0	0	113	c	14154	14	14168	0	856	0	856	0	15138	
LL-S TOTA	EASON	147817		1371 LOCATI		2536	4924	996	ก	M7330	284	82615	3532	e342	0	11874	0	95485	

Appendix Table B5. Estimated age and maturity composition of 1979 Japanese landbased driftnet fishery chinook catch. For month/sub-area strata represented by sufficient biological data ($n \ge 25$), the table shows the age/maturity composition of the total sample available, and the resulting allocation of the reported mothership catch, in numbers of fish.

HTMON		SAMPLE!		-	-	1 N G					. 1	н н	A T	U R	£ S				2024
	AREA	CATCH	T.1	T.2	T.3	T.4+	TOTAL	T.1	0.7	1.7	2.2				-			TOTAL	TOTAL Sampli
YAP	11	2148	140)	ALL DC A1	(O3														13
YAH	12	SAMPLE = 4222	•	•	.0645 272	-	.0968 409					•5558 2347		-3474 1467		.3474 1467			31
YAM	13	SAMPLE= 18222	.0c00 0	.9000		.0345 62P	.0345 678	,000° 0		.7427 13534		.7427 13534		.2228 4060	.0000			.9655 17594	29
YAR		24592 1 2148	O Janu	O LLOCATI	272 FD)	765	1037	0	0	15860	0	15880	0	5527	0	5527	0	21407	
JUNE	11	9588	(UH4	ALL OCA	(D)														17
JUNE	12	12404	(UP 1	ALL OC AT	(O3														8
JUNE	13	SAMPLE = 33512	.0000							.7619 25533		.7619 25533		-2381 7979	.0000		.0000	1.0000 33512	63
JU NE	ALL	59504 21992	O IANU	O LLOCATI	•	0	0	0	O	25533	0	25533	0	7979	0	7979	0	33512	
JULY	11	1812	(UN)	ALL OCAT	(ED)														19
JULY	12	SAMPLE- 8394			.0000		.0000					.8276 6947	-	-1724 1447				1.0000	29
JULY	13	SAMPLE= 30861	.0000	•0000 0		.0000	.0000 0			.8707 26870		.6671 27377		.1129 3484	.0000			1.0000 30861	62
JULY		41067 (1812		O LLOCATI	ED)	0	c	c	0	33527	796	34323	0	4932	0	4932	0	39255	
ALL-S TOTA	EASON L	121163 (25 95 2		O LLOCATI	272 ED)	765	1037	0	n	74940	796	75737	0	18437	0	18437	0	94174	

Appendix Table 86. Estimated age and maturity composition of 1980 Japanese landbased driftnet fishery chinook catch. For month/sub-area strata represented by sufficient biological data ($n \ge 25$), the table shows the age/maturity composition of the total sample available, and the resulting allocation of the reported mothership catch, in numbers of fish.

PONTH		SAMPLE/		м д	TUF	1 N G					1	P M	A T	U R	f 2				20744
****	AREA	CATCH	T.1	1.2	7.3	7.4+	TOTAL	7.1	0.2	1.?	2.2	T.2	0.3	1.3	2.3	T.3	T,4+	JATOT	TOTAL SAMPLE
MAY	11	941	{UHA	LLCCAT	(da)														11
MAY	12	3295	(UNA	LL DC A1	(Da														1
MAY	13	9514	(44)	LLOCAT	(O3														16
MAY	3	9	(UNA	LL CCA1	(031														0
HAY	5	3	CUNA	LL DC A1	(O 3 1														9
MAY	ALL	13762 13762	O Unal	O LOCATI	FD)	0	0	c	0	0	0	0	0	0	0	0	0	0	
JUNE	11	5006	(UNA	LL OC A1	r.E0)														12
JUNE	12	SAMPLE = 12095	.0000 C	.0000						.87P8 10629		.8788 10629	.0000			.1212 1466			34
JUNE	13	SAMPLE- 35508	.0000	.0000						.7723 27520			.0041 146	.1811 6444		.1052 6590			244
JUNE	3	13	(UNA	LLOCAT	(O31														19
JUNE	ALL	52704 5021	0 UNAL	O LOCATI	146 ED)	0	146	0	444	PR149	888	39481	146	7910	0	8057	0	47537	

Appendix Table B6. Continued.

MONTH	Sub-	13		V	MATURING	9 2 1					-	INMATURES	-	a =				•	
	ARCA	AREA LAICH	1.1	1.2	T.3	T.1 T.2 T.3 T.4+ TO	TOTAL	1.1	0.2	TAL T.1 0.2 1.2 2.2 T.2	2.2	T.1 T.2 T.3 T.4+ TOTAL T.1 0.2 1.2 2.2 T.2 0.3 1.3 2.3 T.3 T.4+ TOTAL	0.3	1.3	2.3	1.3	Ţ. †	2.3 T.3 T.4+ TOTAL	SAMPLE
2017	:	JULY 11 SAMPLE# .0000 .0000 .0156 .0000 .0000 .0000 .0147 .0000 .0147 .0000 .1527 .0000 .1527 .0170	0000	0000	.0156	0000	.0156	0000	0000	.6147	0000•	.6147	0000	1527	0000	1527	.0170 19	.9844	\$
110f	12	SAMPLECOOO .0000 .0000 .0000 .0000 .0000 .F611 .00CO .8611 .0000 .1389 .0000 .1389 .0000 1.0000 1.0000 10094 10094 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0000.	0000	0000	0000	0000.	0000	0000.	. 8611	0000	.8611	0000	1369	00000	1369	00000	1.0000	37
JULY 13		SAMPLE .0000 .0000 .0000 .0000 .0000 .0000 .00	00000	0000	0000	0000	00000	00000	9669.	.9254	.0174	0000 .0000 .0398 .9254 .0174 .9826 .0000 .0174 .0000 .0174 .0000 1.0000 0 0 0 0 0 0 0 0 0 0 0 0 0	0000	.0174	0000	.0174	0000	1.0000	705
אוג אור	אוו	66738	UNAL	0 0 UNALLOCATED)	16 ED)	0	2	0	2329	0 2329 43740 1019	1019	67108	•	2593	•	2593	10	19 69720	
ALL-SEASON TOTAL (A 5 ON	ALL-SEASON 136204 O O 164 O 164 O 2773 161909 1907 106566 146 10504 O 10650 19 117257 Total (18783 Unallocated)	UNAL	0 0 164 UNALLOCATFO)	164	0	164	0	£173	0 2773 161909 1907 106566	1907	106566	146	146 10504	0	0 10650	19	19 117257	

Appendix Table B7. Estimated age and maturity composition of 1981 Japanese landbased driftnet fishery chinook catch. For month/sub-area strata represented by sufficient biological data ($n \ge 25$), the table shows the age/maturity composition of the total sample available, and the resulting allocation of the reported mothership catch, in numbers of fish.

IONTH		SAMPLE/				I N G					I	H H	▲ T	U P	E S				TOT 44
	AKEA	CATCH	T.1		T.3		TOTAL			1.7			0.3	1.3	2.3	1.3	1.4+	TOTAL	TOTAL SAMPLE
MAY	11	1729	CUNAL	LLOCAT	(D)														2
MAY	12	4400	(UNAL	LL DC A1	red)														10
HAY	13	29024	(UPAL	LL OC AT	(da)														7
MAY	ALL	35153 (35153	0 UNALI	O LOCATE	_	0	0	0	0	0	0	0	0	0	0	0	0	0	
UNE	11	1089	(UNAL	LL OC AT	(da)													-	1
NNE	12	SAMPLE= 12117	.0000 .	0000	.0000	_	.0000	.0000	_	.7000 8482	.0000	.7000 8482		.3000 3635	.0000			1.0000 12117	30
UNE	13	SAMPLE • 79075	.0000	0000	-		.0000					.6170 48791	-	.3830 30284	-	.3830 30284		1.0000 79075	94
UNE	3	105	CUNAL	LLOCAT	(OB														13
UNE	5	SAMPLE = 146	.0161	.2954 43	.0643	.0161	.3919 57	.0022		•4230 62		.4344	.000C		•	.1715 25			541
UNE	ALL	92532 (1194	2 UNALI	43 LOCATE		2	57	c	842	54811	1684	57336	0	33944	0	33944	0	91281	

Appendix Table B7. Continued.

.0000 .0000 .6342 .00 .0000 .0000 .9475 .00 .0000 .0000 .9475 .00 .0000 .0000 .9475 .00	MONTH	SUB-	*		4	MATURING	9 14					1	THRATURES	_	~					
JULY 12 SAMPLE- COOO COOO COOO COOO COOO COOO COOO CO		4 4		1.1	1.2	1.3	1.4+	TAL	1.1	0.2		2.2	1.2	0.3	1.3	2.3	T.3	1:4	TOTAL	SAMPLE
														† 4 4 1		,				•
8463 (UNALLOCATED) SAMPLE	אחר	11		0000	0000	00000	0000	0000	0000.	0000.	1717	.0846	.7188	0000.	.2013 761	0000.	.2013 761	00000	1.0000	33
SAMPLE0000 .00	JULY		6463	(UNA	11 OC A1	(ED)														•
36 (UNALLOCATED) 7 (UNALLOCATED) 88968 0 0 0 0 0 0 0 0 7 28973 0 1489 0 1489 0 16653 2 43 9 2 57 0 842 67877 2640 86309 0 35434 0 156653 UNALLOCATED)	JULY		SAMPLE = 27799	00000	00000	00000	0000	00000	0000	00000	.9475	.0262	.9738	00000	.0262	00000	.0262	0000.	1.0000	306
7 (UhallOcated) 38968	JULY	-	36	CUNA	LE 00 11	(03)														11
38968	Alor	•	1	CUPA	LT 00 TI	E0)														14
166653 2 43 9 2 57 C 842 P2A?7 2640 86309 C 35434 C 35434 44853 UNALLOCATED)	JULY	774	38968	CNAL	LOCATE		C	0	0	c				0	1469	0	1489	•		
	ALL-S TOTA	EASON		2 UNAL	43 LOCATE		2	57	င	842	62927			0	35434	0	35434	•	121743	

Appendix Table C1. Decision arrays for brood year 1971 chinook salmon caught as immature age 1.2's in 1975.

A) 4-WAY REGION ANALYSIS: ASIA71A, WEST71A, CENT71A, SEBC71A VARIABLES USED: 9,34,16,17,44,35,11,6,40 OVERALL ACCURACY: 70.2 PERCENT

CALCULATED DECISION		CORRECT DECI	SION (PERCENT	')
DECISION	ASIA71A	WEST71A	CENT71A	SEBC71A
ASIA71A WEST71A CENT71A SEBC71A TOTAL	113 (70.2 27 (16.8 18 (11.2 3 (1.9)	156 (78.0)	17 (13.9) 16 (13.1) 71 (58.2) 18 (14.8) 122	11 (5.6) 2 (1.0) 37 (19.0) 145 (74.4) 195

B) 3-WAY REGION ANALYSIS: ASIA71A, WEST71A, CENT71A VARIABLES USED: 17,44,34,21,35,16 OVERALL ACCURACY: 72.8 PERCENT

CALCULATED DECISION		CORREC	T DEC	;I:	SION (P	ERCEN	T)
DECISION .	ASI	A71A	WE	s	Γ71A	CE	NT71A
ASIA71A WEST71A CENT71A TOTAL	32 (151	Ċ	14.0) 75.5) 10.5)	15	(13.1) (12.3) (74.6)

C) 3-WAY REGION ANALYSIS: ASIA71A, WEST71A, SEBC71A
VARIABLES USED: 9,34,16,17,35,44,11, 1,45,42,23,52,25,46
OVERALL ACCURACY: 83.5 PERCENT

CALCULATED DECISION	CORRECT	DECISION (P	ERCENT)
DECIDION	ASIA71A	WEST71A	SEBC71A
ASIA71A WEST71A SEBC71A TOTAL	131 (81.4) 27 (16.8) 3 (1.9) 161	33 (16.5) 165 (82.5) 2 (1.0) 200	13 (6.7) 13 (6.7) 169 (86.7) 195

D) 3-WAY REGION ANALYSIS: WEST71A, CENT71A, SEBC71A VARIABLES USED: 7,16,34,21,35,52,5
OVERALL ACCURACY: 78.7 PERCENT

CALCULATED DECISION		CORRECT	DECISION	(PERCENT)
DECIDION .	WES	T71A	CENT71A	SEBC71A
WEST71A CENT71A SEBC71A TOTAL		88.0) 12.0) 0.0)	17 (13.9 90 (73.8 15 (12.3	3) 47 (24.1)

Appendix Table Cl. Continued.

E) 3-WAY REGION ANALYSIS: ASIA71A, CENT71A, SEBC71A VARIABLES USED: 7,55,17,39,24,22 OVERALL ACCURACY: 75.1 PERCENT

CALCULATED DECISION	CORRECT DECISION (PERCENT)			
	ASI.	A71A	CENT7†A	SEBC71A
ASIA71A CENT71A SEBC71A TOTAL	27 (80.1) 16.8) 3.1)	19 (15.6) 85 (69.7) 18 (14.8) 122	15 (7.7) 33 (16.9) 147 (75.4) 195

F) 2-WAY REGION ANALYSIS: ASIA71A, WEST71A
VARIABLES USED: 5,34,42,44,17,35,11,40,23,41,27,56
OVERALL ACCURACY: 84.8 PERCENT

CALCULATED DECISION	CORRECT DECI	SION (PERCENT)
DECISION	ASIA71A	WEST71A
ASIA71A WEST71A TOTAL	141 (87.6) 20 (12.4) 161	36 (18.0) 164 (82.0) 200
TOTAL	, ,	200

G) 2-WAY REGION ANALYSIS: ASIA71A, CENT71A VARIABLES USED: 9,17,34,44 OVERALL ACCURACY: 84.1 PERCENT

CALCULATED DECISION	CORRECT DE	CISION (PERCENT)
DUCTOTOR	ASIA71A	CENT71A
ASIA71A CENT71A TOTAL	135 (83.9 26 (16.1 161	

H) 2-WAY REGION ANALYSIS: WEST71A, CENT71A VARIABLES USED: 21,34,35, 9, 5
OVERALL ACCURACY: 84.2 PERCENT

CALCULATED DECISION	CORRECT	DECISION	(PERCENT)
	WEST7	1A CI	ENT71A
WEST71A CENT71A TOTAL	168 (8 32 (1 200		(15.6) (84.4)

I) 2-WAY REGION ANALYSIS: CENT71A, SEBC71A VARIABLES USED: 7,55,24,44,17,26 OVERALL ACCURACY: 81.9 PERCENT

CALCULATED DECISION	CORRECT DECI	SION (PERCENT)		
	CENT71A	SEBC71A		
CENT71A SEBC71A TOTAL	101 (82.8) 21 (17.2) 122	37 (19.0) 158 (81.0) 195		

J) 6-WAY RIVER ANALYSIS: ASIA71A, YUK71A, KUSK71A, BRIS71A, CENT71A, SEBC71A VARIABLES USED: 9,34,16,25,17,44,11,35, 6,52,40,24,47 OVERALL ACCURACY: 57.9 PERCENT

CALCULATED DECISION					CORRE	ECT DECI	SION (PERCENT	')			
DECISION	ASI	A71A	YU	K71A	KUS	5K71A	BRI	S71A	CEN	IT71A	SEB	71A
ASIA71A	102 (63.4)	20 (10.0)	21 (11.8)	17 (8.5)	18 (14.8)	5 (2.6)
YUK71A	14 (8.7)	100 (50.0)	25 (14.0)	23 (11.5)	17 (13.9)	3 (1.5)
KUSK71A	19 (11.8)	33 (16.5)	88 (49.4)	36 (18.0)	5 (4.1)	2 (1.0)
BRIS71A	7 (4.3)	23 (11.5)	31 (17.4)	114 (57.0)	4 (3.3)	1 (.5)
CENT71A	16 (9.9)	23 (11.5)	12 (6.7)	9 (4.5)	65 (53.3)	39 (20.0)
SEBC71A	3 (1.9)	1 (.5)	1 (.6)	1 (.5)	13 (10.7)	145 (74.4)
TOTAL	161		200		178		200		122		195	

K) 5-WAY RIVER ANALYSIS: ASIA71A, YUK71A, KUSK71A, BRIS71A, CENT71A VARIABLES USED: 6,52,21,34,35,12,44,11,40,25,24 OVERALL ACCURACY: 57.2 PERCENT

CALCULATED DECISION				CORREC	T DECI	SION (F	ERCENT	?)		
DECISION	ASIA	71A	YU	K71A	KUS	K71A	BRI	S71A	CEN	IT7 1 A
ASIA71A	102 (63.4)	17 (8.5)	22 (12.4)	14 (7.0)	18 (14.8)
YUK71A	11 (6.8)	99 (49.5)	25 (14.0)	25 (12.5)	15 (12.3)
KUSK71A	22 (13.7)	33 (16.5)	92 (51.7)	38 (19.0)	5 (4.1)
BRIS71A	5 (3.1)	25 (12.5)	28 (15.7)	112 (56.0)	4 (3.3)
CENT71A	21 (13.0)	26 (13.0)	11 (6.2)	11 (5.5)	80 (65.6)
TOTAL	161		200		178		200		122	

L) 5-WAY RIVER ANALYSIS: ASIA71A, YUK71A, KUSK71A, BRIS71A, SEBC71A VARIABLES USED: 9,34,16,25,44,35,11, 6,40,52,24 OVERALL ACCURACY: 64.1 PERCENT

CALCULATED		CORREC	T DECISION (F	'ERCENT)	
DECISION	ASIA71A	YUK71A	KUSK71A	BRIS71A	SEBC71A
ASIA71A	111 (68.9)	27 (13.5)	22 (12.4)	15 (7.5)	10 (5.1)
YUK71A	18 (11.2)	111 (55.5)	31 (17.4)	28 (14.0)	14 (7.2)
KUSK71A	23 (14.3)	35 (17.5)	92 (51.7)	39 (19.5)	2 (1.0)
BRIS71A	7 (4.3)	25 (12.5)	31 (17.4)	117 (58.5)	2 (1.0)
SEBC71A	2 (1,2)	2 (1.0)	2 (1.1)	1 (.5)	167 (85.6)
TOTAL	161	200	178	200	195

M) 5-WAY RIVER ANALYSIS: YUK71A, KUSK71A, BRIS71A, CENT71A, SEBC71A VARIABLES USED: 7,25,21,34,35, 5,44,52,24 OVERALL ACCURACY: 62.0 PERCENT

CALCULATED						CORREC	T DECI	S	ION (P	ERCE	NT)			
DECISION	Y	U	C71A	KI	US	K71A	BRI	S	71A	С	EN	T71A	SI	В	271A
YUK71A	100	(50.0)	24	(13.5)	22 (11.0)	18	(14.8)	3	(1.5)
KUSK71A	40	(20.0)	106	(59.6)	42 (21.0)	6	(4.9)	0	(0.0)
BRIS71A	25	(12.5)	32	(13.3)	118 (59.0)	4	(3.3)	1	(.5)
CENT71A	33	(16.5)	15	Ċ	8.4)	16 (8.0)	80	(65.6)	43	(22.1)
SEBC71A	2	(1.0)	1	(.6)	2 (1.0)	14	(11.5)	148	(75.9)
TOTAL	200			178			200			122			195		

N) 4-WAY RIVER ANALYSIS: ASIA71A, YUK71A, KUSK71A, BRIS71A VARIABLES USED: 6,52,35,44,17,34,24,25,47,11,40 OVERALL ACCURACY: 59.8 PERCENT

CALCULATED DECISION		CORRECT DECI	SION (PERCENT)
DECISION	ASIA71A	YUK71A	KUSK71A	BRIS71A
ASIA71A YUK71A KUSK71A BRIS71A TOTAL	117 (72.7) 17 (10.6) 21 (13.0) 6 (3.7) 161	22 (11.0) 110 (55.0) 40 (20.0) 28 (14.0) 200	24 (13.5) 28 (15.7) 97 (54.5) 29 (15.3) 178	17 (8.5) 32 (16.0) 37 (18.5) 114 (57.0) 200

O) 4-WAY RIVER ANALYSIS: ASIA71A, YUK71A, BRIS71A, SEBC71A VARIABLES USED: 25,21,34,35, 5, 7,51,44,52,17 OVERALL ACCURACY: 74.2 PERCENT

CALCULATED DECISION		CORRECT DECI	SION (PERCENT)	
7202030	ASIA71A	YUK71A	BRIS71A	SEBC71A	
ASIA71A	121 (75.2)	29 (14.5)	22 (11.0)	13 (6.7)	
YUK71A	23 (14.3)	137 (68.5)	44 (22.0)	12 (6.2)	
BRIS71A	14 (8.7)	32 (16.0)	133 (66.5)	1 (.5)	
SEBC71A	3 (1.9)	2 (1.0)	1 (.5)	169 (86.7)	
TOTAL	161	200	200	195	

P) 4-WAY RIVER ANALYSIS: YUK71A, KUSK71A, BRIS71A, CENT71A VARIABLES USED: 9,34,16,25,39,52, 5,35,11,40 OVERALL ACCURACY: 62.2 PERCENT

CALCULATED DECISION		CORRECT DECI	ISION (PERCENT)
DECISION	YUK71A	KUSK7 1A	BRIS71A	CENT71A
YUK71A KUSK71A BRIS71A CENT71A TOTAL	102 (51.0) 44 (22.0) 25 (12.5) 29 (14.5) 200	23 (12.9) 108 (60.7) 31 (17.4) 16 (9.0) 178	23 (11.5) 47 (23.5) 115 (57.5) 15 (7.5) 200	16 (13.1) 7 (5.7) 2 (1.6) 97 (79.5) 122

Q) 4-WAY RIVER ANALYSIS: YUK71A, KUSK71A, BRIS71A, SEBC71A VARIABLES USED: 7,25,21,34,35,44,24, 9 OVERALL ACCURACY: 68.2 PERCENT

CALCULATED DECISION		CORRECT DECI	SION (PERCENT)	
DECISION	YUK71A	KUSK71A	BRIS71A	SEBC71A	
YUK71A KUSK71A BRIS71A SEBC71A TOTAL	119 (59.5) 44 (22.0) 32 (16.0) 5 (2.5) 200	38 (21.3) 107 (60.1) 31 (17.4) 2 (1.1) 178	24 (12.0) 49 (24.5) 126 (63.0) 1 (.5) 200	14 (7.2) 2 (1.0) 3 (1.5) 176 (90.3)	

R) 4-WAY RIVER ANALYSIS: YUK71A, KUSK71A, CENT71A, SEBC71A VARIABLES USED: 7,34,21,52, 5,39,24,35,29
OVERALL ACCURACY: 68.3 PERCENT

CALCULATED DECISION	CORRECT DECISION (PERCENT)						
DECISION	YUK71A	KUSK71A	CENT71A	SEBC71A			
YUK71A KUSK71A CENT71A SEBC71A	30 (15.0)	34 (19.1) 126 (70.8) 17 (9.6) 1 (.6)	19 (15.6) 4 (3.3) 85 (69.7) 14 (11.5)	4 (2.1) 0 (0.0) 43 (22.1) 148 (75.9)			

S) 3-WAY RIVER ANALYSIS: YUK71A, KUSK71A, BRIS71A VARIABLES USED: 25,49,27,23,11,26 OVERALL ACCURACY: 61.0 PERCENT

CALCULATED DECISION	CORREC	T DECISION (F	ERCENT)
DECISION	YUK71A	KUSK71A	BRIS71A
YUK71A KUSK71A BRIS71A TOTAL	117 (58.5) 50 (25.0) 33 (16.5) 200	35 (19.7) 112 (62.9) 31 (17.4) 178	30 (15.0) 47 (23.5) 123 (61.5) 200

T) 3-WAY RIVER ANALYSIS: ASIA71A, YUK71A, KUSK71A VARIABLES USED: 44,34,17, 1,47,40,52,35,51,41 OVERALL ACCURACY: 67.8 PERCENT

CALCULATED DECISION		CORRECT	DECISION	(PERCENT)
DEC1010N	ASI	A71A	YUK71A	KUSK71A
ASIA71A YUK71A KUSK71A TOTAL	13 (12.4)	25 (12.5 124 (62.0 51 (25.5 200	1) 42 (23.6)

U) 3-WAY RIVER ANALYSIS: ASIA71A, YUK71A, BRIS71A VARIABLES USED: 5,52,34,44,17,26,11,47,40,25 OVERALL ACCURACY: 72.1 PERCENT

CALCULATED DECISION	CORREC	T DECISION (F	ERCENT)
DECISION	ASIA71A	YUK71A'	BRIS71A
ASIA71A YUK71A BRIS71A TOTAL	126 (78.3) 23 (14.3) 12 (7.5) 161	26 (13.0) 143 (71.5) 31 (15.5) 200	20 (10.0) 47 (23.5) 133 (66.5) 200

V) 3-WAY RIVER ANALYSIS: YUK71A, BRIS71A, SEBC71A VARIABLES USED: 55,25, 7,21,34,28 OVERALL ACCURACY: 79.8 PERCENT

CALCULATED	CORRECT DECISION (PERCENT)											
DECIDION	Y	UK71A	BRIS71A	SEBC71A								
YUK71A		(73.5)	49 (24.5	, , , , , , , , , , , , , , , , , , , ,								
BRIS71A SEBC71A	-	(25.5) (1.0)	149 (74.5	.,								
TOTAL	200		200	195								

W) 3-WAY RIVER ANALYSIS: ASIA71A, YUK71A, SEBC71A VARIABLES USED: 28, 9,34,16,39,11,56, 6,40,42,52,41,44 OVERALL ACCURACY: 84.9 PERCENT

CALCULATED DECISION	CORRECT	DECISION (P	ERCENT)
prototon	ASIA71A	YUK71A	SEBC71A
ASIA71A YUK71A SEBC71A TOTAL	24 (14.9) 4 (2.5)	24 (12.0) 173 (86.5) 3 (1.5) 200	17 (8.7) 11 (5.6) 167 (85.6) 195

X) 2-WAY RIVER ANALYSIS: ASIA71A, YUK71A VARIABLES USED: 44,17,34,47,26,11,45,46,56 OVERALL ACCURACY: 85.2 PERCENT

CALCULATED DECISION	CORE	Œ(T DECI	SION	()	PERCENT)
•	AS	I	A71A	Y	U	71A
ASIA71A YUK71A TOTAL	•	•	83.9) 16.1)		-	13.5) 86.5)

Appendix Table C2. Decision arrays for brood year 1972 chinook salmon caught as immature age 1.2's in 1976.

A) 4-WAY REGION ANALYSIS: ASIA72A, WEST72A, CENT72A, SEBC72A VARIABLES USED: 7, 5,34,21,35,11,17,42,44 OVERALL ACCURACY: 70.6 PERCENT

CALCULATED DECISION		CORRECT DECI	SION (PERCENT)
DECISION	ASIA72A	WEST72A	CENT72A	SEBC72A
ASIA72A WEST72A CENT72A SEBC72A TOTAL	133 (71.5) 34 (18.3) 16 (8.6) 3 (1.6) 186	21 (10.5) 155 (77.5) 16 (8.0) 8 (4.0) 200	32 (17.3) 20 (10.8) 104 (56.2) 29 (15.7) 185	1 (.6) 9 (5.0) 31 (17.2) 139 (77.2) 180

B) 3-WAY REGION ANALYSIS: ASIA72A, WEST72A, CENT72A VARIABLES USED: 6,34,21,35, 5
OVERALL ACCURACY: 75.0 PERCENT

CALCULATED DECISION	CORREC	T DECISION (P	ERCENT)
20101011	ASIA72A	WEST72A	CENT72A
ASIA72A WEST72A CENT72A TOTAL	135 (72.6) 30 (16.1) 21 (11.3) 186	23 (11.5) 159 (79.5) 18 (9.0) 200	32 (17.3) 18 (9.7) 135 (73.0) 185

C) 3-WAY REGION ANALYSIS: WEST72A, CENT72A, SEBC72A
VARIABLES USED: 7,22,27,16,23,26,44,30,57,51,25,21, 6,58
OVERALL ACCURACY: 80.0 PERCENT

CALCULATED DECISION	(ORRECT	DECIS	ION (PE	RCENT)
D101010N	WEST		CENT	72A	SEB	72A
WEST72A CENT72A SEBC72A TOTAL	175 ({ 19 {	37.5) 9.5) 3.0)		12.4) 72.4) 15.1)	9 (27 (144 (180	•

D) 2-WAY REGION ANALYSIS: ASIA72A, WEST72A VARIABLES USED: 6,53,11 OVERALL ACCURACY: 84.4 PERCENT

CALCULATED DECISION	CORF	RΕ	T DECI	SION	(1	PERCENT)
	AS	SI	A72A	WI	ES'	T72A
ASIA72A WEST72A TOTAL		•	82.8) 17.2)			14.0) 86.0)

E) 2-WAY REGION ANALYSIS: ASIA72A, CENT72A VARIABLES USED: 34,16, 9 OVERALL ACCURACY: 82.5 PERCENT

CALCULATED DECISION	CORRECT DEC	ISION (PERCENT)
DECISION	ASIA72A	CENT72A
ASIA72A CENT72A TOTAL	156 (83.9) 30 (16.1) 186	35 (18.9) 150 (81.1) 185

F) 2-WAY REGION ANALYSIS: WEST72A, CENT72A VARIABLES USED: 36,11,34,21,35,31, 7 OVERALL ACCURACY: 88.8 PERCENT

CALCULATED	CORE	F	T DECT	STON	-	PERCENT)		
DECISION	CORP				(10000000			
	WE	S	72A	CE	N'	172A		
WEST72A	178	(89.0)	21	(11.4)		
CENT72A	22	(11.0)	164	(88.6)		
TOTAL	200			185				
					-			

G) 2-WAY REGION ANALYSIS: WEST72A, SEBC72A
VARIABLES USED: 27,49,34,35,21, 7,22
OVERALL ACCURACY: 93.6 PERCENT

CALCULATED DECISION	CORREC	T DECI	SION	(PERCENT)				
DECISION	WEST	72A	SE	В	C72A	_		
WEST72A SEBC72A TOTAL	190 (10 (200	95.0) 5.0)		•	7.8) 92.2)			

H) 6-WAY RIVER ANALYSIS: ASIA72A, YUK72A, KUSK72A, BRIS72A, CENT72A, SEBC72A VARIABLES USED: 7,36,34,21,35, 5,11,17,42,22 OVERALL ACCURACY: 58.9 PERCENT

CALCULATED DECISION							COR	RE	CT DECI	SION	(PERCENT	')				
DECIDION	AS	I	172A		YU	K72A	K	JS	K72A	В	RI.	S72A	C	EN	T72A	SE	BC72#
ASIA72A	129	(69.4)	17	' (8.5)	13	(6.5)	5	(2.5)	35	(18.9)	 1	(.
YUK72A	15	Ċ	8.1)	110	(55.0)	38	(19.0)	26	Ĺ	13.0)	8	Ċ	4.3)	4	(2.
KUSK72A	23	(12.4)	31	1	17.0)	77	(38.5)	34	(17.0)	4	(2.2)	3	(1.
BRIS72A	5	Ĺ	2.7)	18	(9.0)	54	(27.0)	123	(61.5)	10	(5.4)	3	(1.
CENT72A	13	(7.0)	17	' (8.5)	10	(5.0)	4	(2.0)	96	(51.9)	30	(16.
SEBC72A	1	Ċ	.5)	Ţ	(2.0)	8	(4.0)	8	(4.0)	32	(17.3)	139	(77.
TOTAL	186	·	- •	200)		200	·		200	•		185	•		180	

I) 5-WAY RIVER ANALYSIS: ASIA72A, YUK72A, KUSK72A, BRIS72A, CENT72A VARIABLES USED: 6,35,34,16,36,11, 1,17,22,42 OVERALL ACCURACY: 59.2 PERCENT

CALCULATED						CORREC	T DEC	I	SION (F	ERCE!	IT)			
DECISION	A.	SI.	A72A		YU	K72A	K	ısı	K72A	Bi	łI.	\$72A	CE	N'	T72A
ASIA72A	130	(69.9)	20	(10.0)	13	(6.5)	6	(3.0)	33	(17.8)
YUK72A	19	(10.2)	114	(57.0)	41	(20.5)	24	(12.0)	10	(5.4)
KUSK72A	19	(10.2)	35	(17.5)	76	(38.0)	34	(17.0)	6	(3.2)
BRIS72A	5	Ċ	2.7)	16	(8.0)	54	Ĺ	27.0)	126	(63.0)	10	Ĺ	5.4)
CENT72A	13	Ċ	7.0)	15	(7.5)	16	ĺ	8.0)	10	(5.0)	126	(68.1)
TOTAL	186	•		200	•		200	•	,	200	•		185	٠	

J) 5-WAY RIVER ANALYSIS: ASIA72A, YUK72A, KUSK72A, CENT72A, SEBC72A VARIABLES USED: 7,36,34,21,11,35,42,37, 9, 1,22,30,29,28,44,39 OVERALL ACCURACY: 65.4 PERCENT

CALCULATED DECISION						CORREC	T DEC	I	SION (P	ERCE	NT)			
DECISION	A.	SI	A72A		(U	K72A	ΚU	SI	72A	C	EN	T72A	Si	EB	72A
ASIA72A	129	(69.4)	18	ζ.	9.0)	14	(7.0)	31	(16.8)	1	(.6)
YUK72A	15	(8.1)	124	(62.0)	43	(21.5)	9	(4.9)	5	Ĺ	2.8)
KUSK72A	26	(14.0)	38	Ċ	19.0)	119	Ċ	59.5)	8	Ċ	4.3)	5	(2.8)
CENT72A	13	Ċ	7.0)	17	Ĺ	8.5)	16	Ċ	8.0)	106	Ċ	57.3)	27	į	15.0)
SEBC72A	3	(1.6)	3	(1.5)	8	(4.0)	31	(16.8)	142	(78.9)
TOTAL	186			200	٠		200			185	•	, - ,	180	`	,

K) 4-WAY RIVER ANALYSIS: ASIA72A, YUK72A, KUSK72A, CENT72A VARIABLES USED: 6,21,34,35, 5,36, 9,42 OVERALL ACCURACY: 64.8 PERCENT

CALCULATED DECISION		CORRECT DEC	ISION (PERCENT)
DECISION	ASIA72A	YUK72A	KUSK72A	CENT72A
ASIA72A YUK72A KUSK72A CENT72A TOTAL	132 (71.0) 14 (7.5) 25 (13.4) 15 (8.1) 186	19 (9.5) 112 (56.0) 46 (23.0) 23 (11.5) 200	18 (9.0) 45 (22.5) 123 (61.5) 14 (7.0) 200	29 (15.7) 13 (7.0) 12 (6.5) 131 (70.8) 185

L) 4-WAY RIVER ANALYSIS: ASIA72A, YUK72A, BRIS72A, CENT72A VARIABLES USED: 6,34,21,35, 5,36,22,59,32,17,47 OVERALL ACCURACY: 69.0 PERCENT

CALCULATED DECISION				CORI	RE	CT DECI	SION	(1	PERCENT)		
DECISION	AS	SI	172A		נטו	K72A	BI	RI:	S72A	CI	N.	T72A
ASIA72A	136	(73.1)	25	(12.5)	5	(2.5)	38	(20.5)
YUK72A	22	(11.8)	137	(68.5)	11.11	(22.0)	10	(5.4)
BRIS72A	12	(6.5)	20	(10.0)	138	(69.0)	16	(8.6)
CENT72A	16	(8.6)	18	(9.0)	13	(6.5)	121	(65.4)
TOTAL	186			200			200			185		

M) 4-WAY RIVER ANALYSIS: YUK72A, KUSK72A, BRIS72A, CENT72A VARIABLES USED: 37,11,34,21,35,42,22,26 OVERALL ACCURACY: 63.7 PERCENT

CALCULATED DECISION			CORRE	ECT DECI	SION	(PERCENT)	
DECISION	YU	K72A	KUS	K72A	В	₹I.	572A	CEN	T72A
YUK72A KUSK72A		61.5) 19.5)		20.5) 45.0)		•	11.5)	13 (10 (7.0) 5.4)
BRIS72A CENT72A		8.0) 11.0)		26.5) 8.0)		•	66.0) 4.5)		5.4) 82.2)
TOTAL	200		200		200			185	

N) 4-WAY RIVER ANALYSIS: YUK72A, KUSK72A, BRIS72A, SEBC72A VARIABLES USED: 36,34,21,35,49, 6 OVERALL ACCURACY: 65.3 PERCENT

CALCULATED DECISION.		CORRECT DECI	SION (PERCENT)
	YUK72A	KUSK72A	BRIS72A	SEBC72A
YUK72A KUSK72A BRIS72A SEBC72A TOTAL	137 (68.5) 39 (19.5) 17 (8.5) 7 (3.5) 200	53 (26.5) 82 (41.0) 55 (27.5) 10 (5.0) 200	31 (15.5) 35 (17.5) 126 (63.0) 8 (4.0) 200	10 (5.6) 5 (2.8) 5 (2.8) 160 (88.9) 180

O) 4-WAY RIVER ANALYSIS: YUK72A, KUSK72A, CENT72A, SEBC72A VARIABLES USED: 55,12,34,21,35, 7,44,37,22,56 OVERALL ACCURACY: 69.5 PERCENT

CALCULATED DECISION		CORRECT DECISION (PERCENT)							
	YUK72A	KUSK72A	CENT72A	SEBC72A					
YUK72A KUSK72A CENT72A SEBC72A TOTAL	129 (64.5) 47 (23.5) 21 (10.5) 3 (1.5) 200	53 (26.5) 125 (62.5) 17 (8.5) 5 (2.5) 200	13 (7.0) 12 (6.5) 127 (68.6) 33 (17.8) 185	6 (3.3) 4 (2.2) 22 (12.2) 148 (82.2) 180					

P) 3-WAY RIVER ANALYSIS: YUK72A, KUSK72A, SEBC72A VARIABLES USED: 34,21, 7,35,36,49,39,30,42 OVERALL ACCURACY: 76.8 PERCENT

CALCULATED DECISION			CORREC	T DE	CI	SION (PERCE	IT.)	_
DEC1510N	Y	U	C72A	K	JSI	K72A	SI	EB	C72A	_
YUR72A KUSK72A SEBC72A TOTAL		Ċ	73.0) 24.0) 3.0)		(27.0) 67.5) 5.5)	8	Ċ	5.6) 4.4) 90.0)	_

Q) 3-WAY RIVER ANALYSIS: YUK72A, BRIS72A, SEBC72A VARIABLES USED: 36,37, 7,22,27,34,21,35,54,42,41 OVERALL ACCURACY: 83.8 PERCENT

CALCULATED DECISION		CORRECT DECISION (PERCENT))
DECISION)	U	(72A	Bi	RI.	S72A	SI	EB	C72A
YUK72A BRIS72A SEBC72A TOTAL	26	Ċ	83.5) 13.0) 3.5)		Ċ	20.0) 75.0) 5.0)	3	Ċ	5.6) 1.7) 92.8)

R) 3-WAY RIVER ANALYSIS: ASIA72A, YUK72A, CENT72A VARIABLES USED: 6,21,34,35,16,36,17,22,49,47 OVERALL ACCURACY: 74.7 PERCENT

CALCULATED DECISION		CORREC	T DECI	SION (F	PERCENT	")
DECTOION	ASI	A72A	YU	K72A	CEN	T72A
ASIA72A YUK72A CENT72A TOTAL	26 (75.3) 14.0) 10.8)	153 (12.5) 76.5) 11.0)	17 (18.4) 9.2) 72.4)

.....

Q) 3-WAY RIVER ANALYSIS: YUK72A, BRIS72A, SEBC72A VARIABLES USED: 36,37, 7,22,27,34,21,35,54,42,41 OVERALL ACCURACY: 83.8 PERCENT

CALCULATED DECISION	CORREC	T DECISION (PERCENT)
DECISION	YUK72A	BRIS72A	. SEBC72A
YUK72A Bris72A SEBC72A Total	167 (83.5) 26 (13.0) 7 (3.5) 200	40 (20.0) 150 (75.0) 10 (5.0) 200	10 (5.6) 3 (1.7) 167 (92.8) 180

R) 3-WAY RIVER ANALYSIS: ASIA72A, YUK72A, CENT72A VARIABLES USED: 6,21,34,35,16,36,17,22,49,47 OVERALL ACCURACY: 74.7 PERCENT

CALCULATED DECISION	CORRE	CT DECISION (PERCENT)
	ASIA72A	YUK72A	CENT72A
ASIA72A YUK72A CENT72A TOTAL	140 (75.3) 26 (14.0) 20 (10.8) 186	153 (76.5)	17 (9.2)

Appendix Table C3. Decision arrays for brood year 1973 chinook salmon caught as immature age 1.2's in 1977.

A) 4-WAY REGION ANALYSIS: ASIA73A, WEST73A, CENT73A, SEBC73A VARIABLES USED: 34, 7,21,35,44,36,11, 5,23,52,58 OVERALL ACCURACY: 71.7 PERCENT

CALCULATED DECISION		CORRECT DECI	SION (PERCENT	')
DECISION	ASIA73A	WEST73A	CENT73A	SEBC73A
ASIA73A WEST73A CENT73A SEBC73A TOTAL	69 (58.5) 31 (26.3) 17 (14.4) 1 (.8)	21 (10.6) 161 (81.3) 13 (6.6) 3 (1.5)	22 (16.4) 11 (8.2) 87 (64.9) 14 (10.4)	6 (3.1) 2 (1.0) 27 (13.9) 159 (82.0)

B) 3-WAY REGION ANALYSIS: ASIA73A, WEST73A, CENT73A
VARIABLES USED: 36,50,16,37,22,25,11,44, 7
OVERALL ACCURACY: 71.6 PERCENT

CALCULATED DECISION	CORREC	DECISION (F	PERCENT)	
***********	ASIA73A	WEST73A	CENT73A	
ASIA73A WEST73A CENT73A TOTAL	74 (62.7) 30 (25.4) 14 (11.9) 118	22 (11.1) 153 (79.8) 18 (9.1) 198	26 (19.4) 11 (8.2) 97 (72.4) 134	

C) 3-WAY REGION ANALYSIS: ASIA73A, WEST73A, SEBC73A
VARIABLES USED: 9,34,16,36,39,11,52,42,22,58,26,53
OVERALL ACCURACY: 83.4 PERCENT

CALCULATED DECISION		CORREC	T DECI	SION (PERCENT)
DECISION	ASI	A73A	WES	T73A	SEB	C73A
ASIA73A WEST73A SEBC73A TOTAL		27.1)	22 (170 (6 (198	85.9)	9 (4 (181 (194	4.6) 2.1) 93.3)

D) 3-WAY REGION ANALYSIS: WEST73A, CENT73A, SEBC73A VARIABLES USED: 9,34, 7,21,25,36,23,44
OVERALL ACCURACY: 83.4 PERCENT

CALCULATED DECISION			CORREC	T DE	CI.	SION (PERCEN	ΙΤ)
DECISION	WE	S:	73A	C	ΞN	T73A	SE	В	C73A
WEST73A CENT73A SEBC73A TOTAL	178 17 3 198	Ċ	89.9) 8.6) 1.5)	103	Ċ	10,4) 76.9) 12.7)		Ċ	4.1) 12.4) 83.5)

E) 2-WAY REGION ANALYSIS: WEST73A, CENT73A VARIABLES USED: 36,16,37,25,22,21,51,35 OVERALL ACCURACY: 90.1 PERCENT

CALCULATED DECISION	CORRECT DECI	SION (PERCENT)		
	WEST73A	CENT73A		
WEST73A CENT73A TOTAL	178 (89.9) 20 (10.1) 198	13 (9.7) 121 (90.3) 134		

F) 2-WAY REGION ANALYSIS: WEST73A, SEBC73A VARIABLES USED: 9,34,60,39,52,21,32 OVERALL ACCURACY: 95.4 PERCENT

CALCULATED DECISION	CORRECT DECISION (PERCENT	r)
DECISION	WEST73A SEBC73A	
WEST73A	191 (96.5) 11 (5.7)	
SEBC73A	7 (3.5) 183 (94.3)	
TOTAL	198 194	

G) 6-WAY RIVER ANALYSIS: ASIA73A, YUK73A, KUSK73A, BRIS73A, CENT73A, SEBC73A VARIABLES USED: 9,34,25,16,21,39,26,52, 6,57,23,50,58,53,22,55 OVERALL ACCURACY: 59.3 PERCENT

CALCULATED DECISION			CORRECT DECI	SION (PERCENT	')	
DECISION	ASIA73A	YUK73A	KUSK73A	BRIS73A	CENT73A	SEBC73A
ASIA73A	57 (48.3)	15 (7.5)	8 (8.9)	6 (3,0)	22 (16.4)	2 (1.0)
YUK73A	13 (11.0)	100 (50.3)	18 (20.0)	11 (5.5)	7 (5.2)	0 (0.0)
KUSK73A	23 (19.5)	50 (25.1)	40 (44.4)	27 (13.5)	4 (3.0)	2 (1.0)
BRIS73A	10 (8.5)	21 (10.6)	18 (20.0)	148 (74.0)	5 (3.7)	2 (1.0)
CENT73A	14 (11.9)	11 (5.5)	5 (5.6)	5 (2.5)	73 (54.5)	24 (12.4)
SEBC73A	1 (.8)	2 (1.0)	1 (1.1)	3 (1.5)	23 (17.2)	164 (84.5)
TOTAL	118	199	90	200	134	194

H) 5-WAY RIVER ANALYSIS: ASIA73A, YUK73A, KUSK73A, BRIS73A, SEBC73A VARIABLES USED: 9,34,16,25,44,52, 5,57,50,23,31,22,55,28,26,53,49 OVERALL ACCURACY: 64.8 PERCENT

CALCULATED DECISION		CORREC	T DECISION (PERCENT)	
DECISION	ASIA73A	YUK73A	KUSK73A	BRIS73A	SEBC73A
ASIA73A	68 (57.6)	17 (8.5)	10 (11.1)	7 (3.5)	8 (4.1)
YUK73A	17 (14.4)	108 (54.3)	18 (20.0)	12 (6.0)	1 (.5)
KUSK73A	19 (16.1)	47 (23.6)	40 (44.4)	29 (14.5)	2 (1.0)
BRIS73A	11 (9.3)	26 (13.1)	20 (22.2)	150 (75.0)	3 (1.5)
SEBC73A	3 (2.5)	1 (.5)	2 (2.2)	2 (1.0)	180 (92.8)
TOTAL	118	199	90	200	194

I) 5-WAY RIVER ANALYSIS: YUK73A, KUSK73A, BRIS73A, CENT73A, SEBC73A VARIABLES USED: 55, 7,25,21,34, 6,39, 9,60,23,17 OVERALL ACCURACY: 64.4 PERCENT

CALCULATED DECISION		CORREC	T DECISION (F	ERCENT)	
DECISION	YUK73A	KUSK73A	BRIS73A	CENT73A	SEBC73A
YUK73A KUSK73A BRIS73A CENT73A SEBC73A TOTAL	93 (46.7) 54 (27.1) 33 (16.6) 17 (8.5) 2 (1.0)	20 (22.2) 46 (51.1) 17 (18.9) 7 (7.8) 0 (0.0)	13 (6.5) 28 (14.0) 152 (76.0) 5 (2.5) 2 (1.0)	12 (9.0) 4 (3.0) 9 (6.7) 94 (70.1) 15 (11.2)	0 (0.0) 5 (2.6) 5 (2.6) 33 (17.0) 151 (77.8)

J) 5-WAY RIVER ANALYSIS: ASIA73A, KUSK73A, BRIS73A, CENT73A, SEBC73A VARIABLES USED: 7,23,36, 6,52,21,34,39,11,26,53,50 OVERALL ACCURACY: 66.7 PERCENT

CALCULATED DECISION		CORREC	T DECISION (F	ERCENT)	
DE010101	ASIA73A	KUSK73A	BRIS73A	CENT73A	SEBC73A
ASIA73A	63 (53.4)	10 (11.1)	7 (3.5)	25 (18.7)	3 (1.5)
KUSK73A	26 (22.0)	53 (58.9)	36 (18.0)	7 (5.2)	3 (1.5)
BRIS73A	11 (9.3)	20 (22.2)	150 (75.0)	4 (3.0)	1 (.5)
CENT73A	17 (14.4)	6 (6.7)	4 (2.0)	85 (63.4)	26 (13.4)
SEBC73A	1 (.8)	1 (1.1)	3 (1.5)	13 (9.7)	161 (83.0)
TOTAL	118	90	200	134	194

K) 4-WAY RIVER ANALYSIS: ASIA73A, YUK73A, KUSK73A, BRIS73A VARIABLES USED: 6,52,50,39,25,57 OVERALL ACCURACY: 57.4 PERCENT

CALCULATED DECISION			CORR	ECT DECI	SION (PERCENT)	
	ASIA	73A	Y	UK73A	KUS	K73A	BRI	S73A
ASIA73A	77 (65.3)	16	(8.0)	13 (14.4)	8 (4.0)
YUK73A	13 (11.0)	99	(49.7)	24 (26.7)	17 (8.5)
KUSK73A	· 18 (15.3)	52	(26.1)	33 (36.7)	19 (9.5)
BRIS73A	10 (8.5)	32	(16.1)	20 (22.2)	156 (78.0)
TOTAL	118		199		90		200	

L) 4-WAY RIVER ANALYSIS: ASIA73A, YUK73A, BRIS73A, SEBC73A VARIABLES USED: 9,34,16,25,44,52, 5,57,50,23 OVERALL ACCURACY: 76.8 PERCENT

CALCULATED DECISION		CORRECT DECI	SION (PERCENT)
DECISION	ASIA73A	YUK73A	BRIS73A	SEBC73A
ASIA73A YUK73A BRIS73A SEBC73A TOTAL	75 (63.6) 25 (21.2) 15 (12.7) 3 (2.5) 118	20 (10.1) 144 (72.4) 34 (17.1) 1 (.5) 199	9 (4.5) 26 (13.0) 161 (80.5) 4 (2.0) 200	9 (4.6) 5 (2.6) 4 (2.1) 176 (90.7) 194

M) 4-WAY RIVER ANALYSIS: ASIA73A, KUSK73A, BRIS73A, SEBC73A VARIABLES USED: 9,34,16,25,39,52,57,50,23,11,42,21 OVERALL ACCURACY: 73.3 PERCENT

CALCULATED DECISION			CORRE	CT DECI	SION (PERCENT	:)	
	ASIA7	3A	KUS	K73A	BRI	S73A	SEB	C73A
ASIA73A KUSK73A BRIS73A SEBC73A TOTAL	77 (6 30 (2 9 (2 (118	5.4) 7.6)	53 (23 (14.4) 58.9) 25.6) 1.1)	37 (155 (2.5) 18.5) 77.5) 1.5)	5 (3.6) 2.6) 2.1) 91.8)

N) 4-WAY RIVER ANALYSIS: YUK73A, KUSK73A, BRIS73A, CENT73A VARIABLES USED: 55,25,21,34,23,33,11,17,44,35 OVERALL ACCURACY: 64.5 PERCENT

CALCULATED DECISION			CORRE	CT DECI	SION	(1	Percent)		
	YU	K73A	KUS	K73A	BF	RI:	573A	CE	N	173A
YUK73A	97 (48.7)	18 (20.0)	16	(8.0)	11	(8.2)
KUSK73A	56 (28.1)	47 (52.2)	29	(14.5)	4	(3.0)
BRIS73A	30 (15.1)	16 (17.3)	147	(73.5)	7	(5.2)
CENT73A	16 (8.0)	9 (10.0)	8	(4.0)	112	(83.6)
TOTAL	199		90		200			134		

O) 4-WAY RIVER ANALYSIS: YUK73A, KUSK73A, BRIS73A, SEBC73A
VARIABLES USED: 52,34,16,55,31,50,57,39,22,49, 5,12,23
OVERALL ACCURACY: 71.0 PERCENT

CALCULATED DECISION		CORRECT DECI	SION (PERCENT)
DECISION	YUK73A	KUSK73A	BRIS73A	SEBC73A
YUK73A KUSK73A BRIS73A SEBC73A TOTAL	113 (56.8) 56 (28.1) 28 (14.1) 2 (1.0) 199	19 (21.1) 52 (57.8) 17 (18.9) 2 (2.2) 90	16 (8.0) 28 (14.0) 153 (76.5) 3 (1.5) 200	3 (1.5) 4 (2.1) 7 (3.6) 180 (92.8) 194

P) 4-WAY RIVER ANALYSIS: KUSK73A, BRIS73A, CENT73A, SEBC73A VARIABLES USED: 55, 7,36,23,25,16, 5,34,39, 6. OVERALL ACCURACY: 74.7 PERCENT

CALCULATED DECISION		CORRECT DECI	SION (PERCENT)
	KUSK73A	BRIS73A	CENT73A	SEBC73A
KUSK73A BRIS73A CENT73A SEBC73A TOTAL	59 (65.6) 21 (23.3) 9 (10.0) 1 (1.1) 90	37 (18.5) 156 (78.0) 5 (2.5) 2 (1.0) 200	11 (8.2) 9 (6.7) 98 (73.1) 16 (11.9) 134	3 (1.5) 4 (2.1) 28 (14.4) 159 (82.0) 194

Q) 3-WAY RIVER ANALYSIS: YUK73A, KUSK73A, BRIS73A VARIABLES USED: 25,23,44,55,17,30,27 OVERALL ACCURACY: 62.5 PERCENT

CALCULATED DECISION	CORRECT	DECISION (PERCENT)
DECISION	YUK73A	KUSK73A	BRIS73A
YUK73A KUSK73A BRIS73A TOTAL	114 (57.3) 53 (26.6) 32 (16.1) 199	24 (26.7) 48 (53.3) 18 (20.0) 90	18 (9.0) 28 (14.0) 154 (77.0) 200

R) 3-WAY RIVER ANALYSIS: ASIA73A, YUK73A, BRIS73A
VARIABLES USED: 6,52,50,44,25,57,59
OVERALL ACCURACY: 73.4 PERCENT

CALCULATED	CORRECT	DECISION (F	PERCENT)
	ASIA73A	YUK73A	BRIS73A
ASIA73A YUK73A BRIS73A TOTAL	80 (67.8) 25 (21.2) 13 (11.0) 118		11 (5.5) 30 (15.0) 159 (79.5) 200

S) 3-WAY RIVER ANALYSIS: YUK73A, KUSK73A, SEBC73A VARIABLES USED: 28,34,21,60,52,16,59,40 OVERALL ACCURACY: 72.1 PERCENT

CALCULATED DECISION	CORF	ECT DECISION	(PERCENT)
DECISION	YUK73A	KUSK73A	SEBC73A
YUK73A KUSK73A SEBC73A TOTAL	129 (64.8 66 (33.2 4 (2.0	52 (57.8	3) 4 (2.1)

T) 3-WAY RIVER ANALYSIS: YUK73A, BRIS73A, CENT73A VARIABLES USED: 25,21,49,60,23,34,55,35,11 OVERALL ACCURACY: 77.6 PERCENT

CALCULATED DECISION	CORR	ECT DECISION (PERCENT)
DECISION	YUK73A	BRIS73A	CENT73A
YUK73A BRIS73A CENT73A TOTAL	143 (71.9 36 (18.1 20 (10.1 199) 155 (77.5)	7 (5.2)

 $(x_1, \dots, x_n) = (x_1, \dots, x_n) = (x_1, \dots, x_n)$

U) 3-WAY RIVER ANALYSIS: KUSK73A, BRIS73A, SEBC73A
VARIABLES USED: 55,36, 7,23,44,25, 1,22,24,21, 9
OVERALL ACCURACY: 80.8 PERCENT

CALCULATED DECISION		CORREC	T DEC	SION (E	PERCENT	r)
	KUS	SK73A	BRI	S73A	SEE	3C73A
KUSK73A	64	71.1)	39 (19.5)	7 (3.6)
BRIS73A	22 (24.4)	156 (78.0)	6 (3.1)
SEBC73A	4 (4.4)	5 (2.5)	181 (93.3)
TOTAL	90		200		194	

Appendix Table C4. Decision arrays for brood year 1974 chinook salmon caught as immature age 1.2's in 1978.

A) 4-WAY REGION ANALYSIS: ASIA74A, WEST74A, CENT74A, SEBC74A
VARIABLES USED: 7,36,21, 6,34,28,55,35,11
OVERALL ACCURACY: 76.5 PERCENT

CALCULATED DECISION	, , , , , , , , , , , , , , , , , , , ,	CORRECT DECI	SION (PERCENT)
DECTOTOR	ASIA74A	WEST74A	CENT74A	SEBC74A
ASIA74A WEST74A CENT74A SEBC74A TOTAL	105 (73.9) 24 (16.9) 13 (9.2) 0 (0.0) 142	13 (6.5) 165 (82.5) 21 (10.5) 1 (.5) 200	8 (12.3) 7 (10.8) 44 (67.7) 6 (9.2) 65	3 (1.5) 3 (1.5) 30 (15.0) 164 (82.0) 200

B) 3-WAY REGION ANALYSIS: ASIA74A, WEST74A, CENT74A VARIABLES USED: 6,16,36,34,35, 1,12,28 OVERALL ACCURACY: 76.6 PERCENT

CALCULATED DECISION		CORREC	T DECISION	(PERCENT)
	ASI	EA74A	WEST74A	CENT74A
ASIA74A WEST74A CENT74A TOTAL	23 ((78.2) (16.2) (5.6)	15 (7.5 162 (81.3 23 (11.5 200	3) 8 (12.3)

C) 3-WAY REGION ANALYSIS: ASIA74A, WEST74A, SEBC74A VARIABLES USED: 27,36,34,28,35,11, 5,39,27,54 OVERALL ACCURACY: 87.5 PERCENT

CALCULATED DECISION		CORREC	T DECI	SION (S	PERCENT)
05015104	ASI	A74A	WES	T74A	SEB	C74A
ASIA74A WEST74A SEBC74A TOTAL	29 (78.9) 20.4) .7)	185 (92.5)	- •	

D) 3-WAY REGION ANALYSIS: WEST74A, CENT74A, SEBC74A VARIABLES USED: 34,21, 7,26, 6
OVERALL ACCURACY: 81.6 PERCENT

CALCULATED DECISION	CORRECT	DECISION (P	ERCENT)
JECISION	WEST74A	CENT74A	SEBC74A
WEST74A CENT74A SEBC74A TOTAL	171 (85.5) 26 (13.0) 3 (1.5) 200	10 (15.4) 50 (76.9) 5 (7.7) 65	4 (2.0) 31 (15.5) 165 (82.5) 200

· · · -

E) 2-WAY REGION ANALYSIS: WEST74A, CENT74A VARIABLES USED: 21,34, 9,35,16,45 OVERALL ACCURACY: 83.0 PERCENT

CALCULATED DECISION	CORRECT	ECISION (PERCENT)
2002000	WEST74A	CENTT4A.
WEST74A CENT74A TOTAL	175 (87. 25 (12. 200	

F) 2-WAY REGION ANALYSIS: WESTT4A, SEBC74A VARIABLES USED: 9.29,34,16,44 OVERALL ACCURACY: 95.5 PERCENT

CALCULATED DECISION	CORF	Œί	T DECI	SION	()	PERCENT)
5002000	WE	s	174A	S	30	274A
WEST74A SEBC74A TOTAL			97.5) 2.5)		•	6.5) 93.5)

3) 6-WAY RIVER ANALYSIS: ASIATHA, YUK74A, KUSK74A, BRIS74A, CENT74A, SEBC74A VARIABLES USED: 36,24,35,21,49,12,50, 1,31,58,52,39,17,25,23,44,28 OVERALL ACCURACY: 67.4 PERCENT

CALCULATED	CORRECT DECISION (PERCENT)										
DECISION	ASI	A74A	YUK74A	KUSK74A	BRIS74A	CENT74A	SEBCT#A				
ASIA74A	106 (74.6)	4 (2.0)	11 (11,2)	6 (4.6)	5 (9.2)	3 (1.5)				
YUKTHA	7 (4.9)	134 (57.0)	12 (12.2)	12 (9.2)	- (10.3)	4 (2.0)				
KUSK74A	10 (7.0)	21 (10.5)	50 (51.3)	17 (13.11	4 (5.2)	0.0)				
BRIS74A	14 (9.9)	23 (11.5)	19 (19.4)	37 (56.9°	3 (4.5)	2 (1.0)				
CENT74A	5 (3.5)	14 (7.0)	5 (5.1)	8 (6.2)	40 (51.5)	25 / 12.5)				
SEBC74A	0 (0.0)	4 (2.0)	1 (1.0)	o (0.0)	5 (7.7)	166 (33.0)				
TOTAL	142		200	98	'30	55	200				

H) 5-WAY RIVER ANALYSIS: ASIA74A, YUK74A, KUSK74A, BRIS74A, SEBC74A VARIABLES USED: 7,36,24,35,49, 1,34,52,25,17, 5,39,44,28,55 OVERALL ACCURACY: 71.2 PERCENT

CALCULATED DECISION		CORRECT DECISION (PERCENT)										
DECTOTOR	ASI	A74A	ָעע	KT4A	KUS	K74A	3R	IS74A	SEB	CT4A		
ASIA74A	104 (73.2)	4 :	2.3)	13 (13.3)	5	(3.3)	5 (2.5		
YUK74A	9 (6.3)	142 (71.0)	15 (15.3)	16	(12.3)	*1 (5.5)		
KUSK74A	14 (9.9)	28 .	14.0)	50 (51.0)	16	(12.3)	1 (.5)		
BRIS74A	15 (10.6)	23 (11.5)	19 (19.4)	92	(70.3)	3 (1.5		
SEBC74A	0 (0.0)	3 (1.5)	11 (1.0)	1	(8.3)	180 (90.0		
TOTAL	142		200		98		130		200	-		

I) 5-WAY RIVER ANALYSIS: YUK74A, KUSK74A, BRIS74A, CENT74A, SEBC74A VARIABLES USED: 9,34,35,21,50,11,12,25,30 OVERALL ACCURACY: 67.7 PERCENT

CALCULATED						CORREC	T DE	CI	SION (P	ERCE	T)			
DECISION	,	UK	74A	κι	JSi	(74A	BI	RI.	S74A	C:	EN'	T74A	S	.B	74A
YUK74A	139	(69,5)	10	(10.2)	13	(10.0)	6	(9.2)	1	(.5)
KUSK74A	20	(10.0)	56	(57.1)	15	(12.3)	4	(6.2)	0	(0.0)
BRIS74A	22	(11.0)	23	(23.5)	86	(66.2)	5	(7.7)	4	(2.0)
CENT74A	18	(9.0)	8	(3.2)	15	(11.5)	42	Ċ	64.6)	33	Ċ	16.5)
SEBC74A	1	(.5)	1	(1.0)	0	(0.0)	8	(12.3)	162	Ĺ	81.0)
TOTAL	200			98			130			65			200	·	

J) 5-WAY RIVER ANALYSIS: ASIAT4A, YUK74A, BRIS74A, CENT74A, SEBC74A VARIABLES USED: 7,36,35,21,34, 6,50,28,11,55,44,52,25,17,39 OVERALL ACCURACY: 73.6 PERCENT

CALCULATED DECISION						CORREC	T DEC	I.	SION (P	ERCE	NT)			
DECISION	A.S	SIA	A74A		יטי	K74A	83	I	574A	C	EN'	T74A	SE	23	C74A
ASIA74A	105	ζ.	73.9)	7	(3.5)	6	(4,6)	8	(12.3)	3	(1.5)
YUK74A	10	(7.0)	:51	(75.5)	17	(13.1)	8	(12.3)	4	(2.0)
BRIS74A	13	1	12.7)	25	1	13.0)	96	(73.3)	3	(4.6)	2	Ċ	1.0)
CENT74A	8	(5.6)	: 3	:	5.5)	10	(7.7)	70	(51.5)	25	ť	12.5)
SEBC74A	1	(.7)	3	(1.5)	1	:	.3)	6	(9.2)	156	(83.0)
TOTAL	142	•		200		•	130			65	•		200	•	-

K) 5-WAY RIVER ANALYSIS: ASIA74A, YUK74A, KUSK74A, CENT74A, SEBC74A VARIABLES USED: 7,36,12, 6,34, 1,50,52,31,39,58,23,43,44 OVERALL ACCURACY: 68.5 PERCENT

CALCULATED DECISION		CORRECT	DECISION (P	ERCENT)	,
)501310N	ASIA74A	YUK74A	KUSK74A	CENT74A	SEBC7#A
ASIA74A YUK74A KUSK74A CENT74A SEBC74A TOTAL	106 (74.6) 8 (5.6) 22 (15.5) 6 (4.2) 0 (0.0) 142	4 (2.0) 137 (68.5) 36 (18.0) 21 (10.5) 2 (1.0) 200	16 (16.3) 17 (17.3) 57 (58.2) 7 (7.1) 1 (1.0) 98	3 (12.3) 3 (12.3) 4 (6.2) 38 (58.5) 7 (10.8) 65	7 (3.5) 7 (3.5) 1 (.5) 20 (10.0) 165 (82.5)

L) 4-WAY RIVER ANALYSIS: ASIA74A, YUK74A, KUSK74A, CENT74A VARIABLES USED: 6,16,34,36,50, 1, 9,52,35,25 OVERALL ACCURACY: 69.3 PERCENT

CALCULATED DECISION		CORRECT DECI	SION (PERCENT))
DECIDION	ASIA74A	YUK74A	KUSK74A	CENT74A
ASIA74A YUK74A KUSK74A CENT74A TOTAL	105 (73.9) 10 (7.0) 23 (16.2) 4 (2.8) 142	4 (2.0) 146 (73.0) 35 (17.5) 15 (7.5) 200	12 (12.2) 16 (16.3) 63 (64.3) 7 (7.1) 98	10 (15.4) 9 (13.8) 3 (4.6) 43 (66.2) 65

M) 4-WAY RIVER ANALYSIS: YUK74A, KUSK74A, BRIS74A, SEBC74A VARIABLES USED: 9,34,16,35,50,25,44,30, 1,17 OVERALL ACCURACY: 73.9 PERCENT

CALCULATED			CORS	E	CT DECI	SION	(PERCENT	·)		
DECISION	YUY	K74A	KU	S	K74A	В	RI:	574A	Si	.B	C74A
YUK74A KUSK74A BRIS74A SEBC74A TOTAL	27 (20 (74.5) 13.5) 10.0) 2.0)	56 24	(16.3) 57.1) 24.5) 2.0)	21 93	(11.5) 16.2) 71.5) .8)	2	(4.5) 1.0) 2.0) 92.5)

N) 4-WAY RIVER ANALYSIS: ASIA74A, YUK74A, CENT74A, SEBC74A
VARIABLES USED: 7,36,24,21, 6,34,31,58,11,44
OVERALL ACCURACY: 77.8 PERCENT

CALCULATED DECISION			CORRE	CT DECI	SION	PERCENT	`)	
DECISION	ASI	A74A	YU	K74A	CE	(T74A	SEB	C74A
ASIA74A YUK74A		77.5) 14.8)		6.5) 30.5)	-	13.3)	- 1	4.0)
CENT74A SEBC74A		7.7)		12.5)		70.3) 6.2)		12.5)
TOTAL	142		200		65		200	

O) 3-WAY RIVER ANALYSIS: ASIA74A, YUK74A, KUSK74A VARIABLES USED: 5,49, 5,52,30,51 OVERALL ACCURACY: 73.9 PERCENT

CALCULATED DECISION	CORRECT	DECISION (P	ERCENT)
9501910N	ASIA74A	YUK74A	KUSK74A
ASIA74A YUK74A KUSK74A TOTAL	13 (9.2) 20 (14.1)	7 (3.5) 155 (77.5) 38 (19.0) 200	13 (13.3) 19 (19.4) 56 (57.3) 98

P) 3-WAY RIVER ANALYSIS: YUK74A, SRIS74A, SEBC74A VARIABLES USED: 9,35,34,16,50,23,52,17 OVERALL ACCURACY: 85.6 PERCENT

CALCULATED DECISION		CORREC	T DECI	SION (PERCENT)
DECISION	YU	K74A	381	S74A	SEB	C74A
YUK74A BRIS74A SEBC74A TOTAL	31 (92.5) 15.5) 2.0)	105 (16.9) 80.8) 2.3)		

Q) 3-WAY RIVER ANALYSIS: YUK74A, KUSK74A, SEBC74A VARIABLES USED: 9,28,34,11,50,39,29,30,52 OVERALL ACCURACY: 83.0 PERCENT

CALCULATED DECISION		CORRECT	DECI	SION (F	ERCENT)
DECISION	YU	K74A	KUS	K74A	SĒB	C74A
YUK74A KUSK74A SEBC74A TOTAL	39 (78.0) 19.5) 2.5)		19.4) 76.5) 4.1)	8 (3 (189 (200	

R) 3-WAY RIVER ANALYSIS: ASIA74A, YUK74A, CENT74A VARIABLES USED: 5,16,34 OVERALL ACCURACY: 78.2 PERCENT

CALCULATED		CORREC	T DECIS	ION (P	ERCENT)	
JECISION	ASI	A74A	YUK	74A	CENT74A	
ASIA74A YUK74A CENT74A TOTAL	13 (/	17 (157 (26 (200	78.5)	12 (18.5) 7 (10.8) 46 (70.8) 65	

S) 3-WAY RIVER ANALYSIS: ASIA74A, YUK74A, SEBC74A
VARIABLES USED: 7,36,24,21,34,31,58, 5,49,27,54, 9
OVERALL ACCURACY: 88.3 PERCENT

CALCULATED DECISION		CORRECT	DECIS	ION (P	ERCENT)
	ASI	A74A	YUK	74A	SEB	C74A
ASIA74A YUK74A SEBC74A TOTAL	26 (80.3) 18.3) 1.4)	10 (186 (4 (200		- •	3.5) 5.0) 91.5)

T) 2-WAY RIVER ANALYSIS: YUK74A, SEBC74A
VARIABLES USED: 29,28,34,21,60
OVERALL ACCURACY: 95.7 PERCENT:

CALCULATED DECISION	CORRI	ECT	DECIS	NCI	(1	ERCENT)
D2010101	Y	UK71	A	SI	36	74A
YUK74A SEBC74A TOTAL	196 4 200		3.0)	13 187 200	•	6.5) 93.5)

Appendix Table C5. Decision arrays for brood year 1975 chinook salmon caught as immature age 1.2's in 1979.

A) 4-WAY REGION ANALYSIS: ASIA75A, WEST75A, CENT75A, SEBC75A VARIABLES USED: 7, 5,34,12,31,35,26,48,53,22,55, 9 OVERALL ACCURACY: 74.5 PERCENT

CALCULATED DECISION	_	CORRECT DECI	SION (PERCENT)
	ASIA75A	WEST75A	CENT75A	SEBC75A
ASIA75A WEST75A CENT75A SEBC75A TOTAL		7 (3.5) 165 (82.9) 22 (11.1) 5 (2.5) 199	11 (12.5) 9 (10.2) 57 (64.8) 11 (12.5) 88	2 (1.0) 9 (4.5) 32 (16.0) 157 (78.5) 200

B) 3-WAY REGION ANALYSIS: ASIA75A, WEST75A, CENT75A VARIABLES USED: 6,26,53,23,31,21,49,57 OVERALL ACCURACY: 76.3 PERCENT

CALCULATED DECISION		CORREC	T DEC	IS	SION (PS	ERCEN'	T)
5501310W	ASI	A75A	WE	S	T75A	CE	NT75A
ASIATSA WESTTSA CENTTSA TOTAL	3 (71.3) 9.4) 18.3)	168	Ċ	3.0) 34.4) 12.5)	12	(13.6) (13.6) (72.7)

C) 2-WAY REGION ANALYSIS: WEST75A, CENTT5A VARIABLES USED: 36, 6,22, 7,55 OVERALL ACCURACY: 87.7 PERCENT

CALCULATED DECISION	CORRECT DEC	ISION (PERCENT)
	WEST75A	CENT75A
WEST75A CENT75A TOTAL	177 (38.9) 22 (11.1) 199	12 (13.5) 75 (86.4) 88

D) 2-WAY REGION ANALYSIS: ASIA75A, CENT75A VARIABLES USED: 26,34,21 OVERALL ACCURACY: 83.2 PERCENT

CALCULATED DECISION	CORRECT DECI	SION (PERCENT)
	ASIA75A	CENT75A
ASIA75A CENT75A TOTAL	69 (81.2) 16 (18.8) 85	13 (14.3) 75 (85.2) 88

E) 6-WAY RIVER ANALYSIS: ASIA75A, YUK75A, KUSK75A, BRIS75A, CENT75A, SEBC75A VARIABLES USED: 7, 5,17,34,12,35,31,48,58,44,11,60,27,54
OVERALL ACCURACY: 64.3 PERCENT

CALCULATED DECISION			CORRECT DEC	SION (PERCENT)	
	ASIA75A	YUK75A	KUSK75A	BRIS75A	CENT75A	SEBC75A
ASIA75A	59 (69.			0 (0.0)	14 (15.9)	3 (1.5)
YUK75A	2 (2.	4) 143 (71.5)		33 (16.8)	7 (8.0)	9 (4.5)
KUSK75A	10 (11.	8) 21 (10.5	120 (60.9)	52 (26.4)	6 (6.3)	2 (1.0)
BRIS75A	1 (1.	2) 22 (11.0	40 (20.3)	100 (50.8)	5 (5.7)	0 (0.0)
CENT75A	13 (15.	3) 8 (4.0	13 (6.6)	10 (5.1)	46 (52.3)	24 (12.0)
SEBC75A	0 (0.	0) 3 (1.5)	0 (0.0)	2 (1.0)	10 (11.4)	162 (81.0)
TOTAL	85	200	197	197	88	200

F) 5-WAY RIVER ANALYSIS: ASIA75A, YUK75A, KUSK75A, BRIS75A, CENT75A VARIABLES USED: 6,26,53,17, 5,34,52,21,44,60,27 OVERALL ACCURACY: 63.1 PERCENT

CALCULATED DECISION		CORREC	T DECISION (F	PERCENT)	
	ASIA75A	YUK75A	KUSK75A	BRIS75A	CENT75A
ASIA75A	55 (54.7)	1 (.5)	4 (2.0)	0 (0.0)	9 (10.2)
YUK75A	3 (3.5)	146 (73.0)	19 (9.6)	32'(16.2)	3 (9.1)
KUSK75A	11 (12.9)	21 (10.5)	117 (59.4)	53 (26.9)	7 (8.0)
BRIS75A	1 (1.2)	21 (10.5)	44 (22.3)	103 (52.3)	6 (6.3)
CENT75A	15 (17.5)	11 (5.5)	13 (5.6)	9 (4.6)	58 (65.9)
TOTAL	85	200	:97	197	88

G) 5-WAY RIVER ANALYSIS: ASIA75A, YUK75A, KUSK75A, CENT75A, SEBC75A VARIABLES USED: 9, 7,34,17,21,35,31,58,48,44,32,26,53 OVERALL ACCURACY: 70.7 PERCENT

CALCULATED DECISION				CORREC	T DECI	SION (P	ERCENT)		
	ASI	A75A	YU	K75A	KUS	K75A	CEN'	175A	SEB	C75A
ASIA75A	56 (65.9)	2 (1.0)	5 (3.0)	12 (13.6)	3 (1.5)
YUK75A	3 (3.5)	152 (76.0)	25 (12.7)	8 (9.1)	7 (3.5)
CUSK75A	12 (14.1)	28 (14.0)	153 (77.7)	8 (9.1)	3 (1.5)
CENT75A	14 (16.5)	14 (7.0)	13 (6.6)	49 (55.7)	30 (15.0)
SEBC75A	0 (0.0)	4 (2.0)	0 (0.0)	11 (12.5)	157 (78.5)
TOTAL	85		200		197		88		200	

H) 4-WAY RIVER ANALYSIS: ASIA75A. YUK75A, KUSK75A, CENT75A VARIABLES USED: 5,17,26,23,53,16, 6,44,34,35,46,45,32,31,50 OVERALL ACCURACY: 74.9 PERCENT

CALCULATED DECISION		CORRECT DECI	SION (PERCENT)	
	ASIA75A	YUK75A	KUSK75A	CENT75A
ASIA75A YUK75A KUSK75A CENT75A TOTAL	59 (69.4) 2 (2.4) 9 (10.6) 15 (17.5) 85	2 (1.0) 157 (78.5) 25 (12.5) 16 (8.0) 200	6 (3.0) 24 (12.2) 158 (30.2) 9 (4.6) 197	7 (3.0) 7 (8.0) 11 (12.5) 63 (71.6) 88

I) 4-WAY RIVER ANALYSIS: YUK75A, KUSK75A, BRIS75A, CENT75A VARIABLES USED: 17,25,60,23,11,52,44,53,21,34,27,50,55,28 OVERALL ACCURACY: 66.8 PERCENT

CALCULATED DECISION	CORRECT DECISION (PERCENT)						
DECISION	YUK75A	KUSK75A	BRIS75A	CENT75A			
YUK75A KUSK75A BRIS75A CENT75A TOTAL	149 (74.5) 19 (9.5) 22 (11.0) 10 (5.0) 200	20 (10.2) 126 (54.0) 45 (22.3) 6 (3.0) 197	33 (16.8) 51 (25.9) 108 (54.8) 5 (2.5) 197	9 (10.2) 7 (8.0) 7 (8.0) 65 (73.9) 88			

J) 4-WAY RIVER ANALYSIS: ASIA75A, KUSK75A, CENT75A, SEBC75A VARIABLES USED: 7, 6,34,26,53,16,35,48, 9, 1 OVERALL ACCURACY: 75.2 PERCENT

CALCULATED DECISION		CORRECT DECI	SION (PERCENT)
	ASIA75A	KUSK75A	CENT75A	SEBC75A
ASIA75A KUSK75A CENT75A SEBC75A TOTAL	57 (67.1) 11 (12.9) 17 (20.0) 0 (0.0) 85	3 (1.5) 172 (37.3) 21 (10.7) 1 (.5)	9 (10.2) 11 (12.5) 58 (65.9) 10 (11.4) 38	2 (1.0) 5 (2.5) 32 (16.0) 161 (80.5) 200

K) 3-WAY RIVER ANALYSIS: YUKT5A, KUSK75A, BRIS75A VARIABLES USED: 17,52,11,34,28,53,21,33,39 OVERALL ACCURACY: 65.4 PERCENT

CALCULATED DECISION	CORRECT	DECISION (P	ERCENT)
DECISION	YUK75A	KUSK75A	BRIS75A
YUK75A KUSK75A BRIS75A TOTAL	152 (76.0) 21 (10.5) 27 (13.5) 200	21 (10.7) 128 (65.0) 48 (24.4) 197	34 (17.3) 54 (27.4) 109 (55.3) 197

L) 3-WAY RIVER ANALYSIS: YUK75A, KUSK75A, CENT75A VARIABLES USED: 5,17,36, 7,50,21,39,34,23,25,27,46,33 OVERALL ACCURACY: 79.3 PERCENT

CALCULATED DECISION	C	ORRECT	DEC	13	NOI	195	RCEN	T)
DECISION	YUK7	5 A	ĸIJ	SK	75A		CS	N.	C75A
YUK75A KUSK75A CENT75A TOTAL	155 (7 32 (1 13 (200	6.0) 6.5)	19 168 10 197	(35.	3)	14	(9.1) 15.9) 75.0)

Appendix Table C6. Decision arrays for brood year 1976 chinook salmon caught as immature age 1.2's in 1980.

A) 4-WAY REGION ANALYSIS: ASIA76A, WEST76A, CENT76A, SEBC76A VARIABLES USED: 7,16,34, 5,35,31, 9,58,54,27,32 OVERALL ACCURACY: 72.2 PERCENT

CALCULATED DECISION		CORRECT DECI	SION (PERCENT)
DECISION	ASIA76A	WEST76A	CENT76A	SEBC76A
ASIA76A WEST76A CENT76A SEBC76A TOTAL	165 (82.9) 10 (5.0) 24 (12.1) 0 (0.0) 199	6 (3.0) 158 (79.4) 31 (15.6) 4 (2.0)	20 (10.0) 34 (17.0) 111 (55.5) 35 (17.5) 200	7 (3.5) 7 (3.5) 44 (22.0) 142 (71.0) 200

B) 3-WAY REGION ANALYSIS: ASIA76A, WEST76A, CENT76A VARIABLES USED: 7, 6,35,17,34,12,44
OVERALL ACCURACY: 80.3 PERCENT

CALCULATED DECISION		CORREC	T DECIS:	3N (P	ERCENT!)
	ASI	A76A	WEST:	'6A	ÇEN:	[76A
ASIA75A WEST75A CENT75A TOTAL		1 1	12 (158 (7 29 (1	9.4)	34 (11.5) 17.0) 71.5)

C) 3-WAY REGION ANALYSIS: ASIA76A, WEST76A, SEBC76A VARIABLES USED: 5,34,26,16,52,25
OVERALL ACCURACY: 89.8 PERCENT

CALCULATED DECISION	CORRECT	DECISION (P	ERCENT)
DECISION	asia76a	WEST76A	SEBC76A
ASIA76A WEST76A SEBC76A TOTAL	179 (89.9) 14 (7.0) 6 (3.0) 199	9 (4.5) 180 (90.5) 10 (5.0) 199	9 (4.5) 13 (6.5) 178 (39.0) 200

D) 3-WAY REGION ANALYSIS: WEST76A, CENT76A, SEBC76A VARIABLES USED: 12,21,34,35, 9,40,24 OVERALL ACCURACY: 74.5 PERCENT

CALCULATED DECISION		CORREC	T DECI	SION (F	ERCENT	")
DECISION	WES	T76A	CEN	T76A	SEE	C76A
WEST76A CENT76A SEBC76A TOTAL	24 (85.4) 12.1) 2.5)			44 (3.5) 22.0) 74.5)

E) 3-WAY REGION ANALYSIS: ASIA76A, CENT76A, SEBC76A VARIABLES USED: 7,12,27,34, 5,54, 9,31,32,11,56 OVERALL ACCURACY: 77.6 PERCENT

CALCULATED DECISION	CORREC	r decision (P	ERCENT)
DEC1210N	asia76a	CENT75A	SEBC76A
ASIA76A CENT76A SEBC76A TOTAL	171 (85.9) 28 (14.1) 0 (0.0) 199	20 (10.0) 146 (73.0) 34 (17.0) 200	9 (4.5) 43 (21.5) 148 (74.0) 200

F) 2-WAY REGION ANALYSIS: ASIA76A, WESTT6A VARIABLES USED: 6,35,16,32,59,27,36,49 OVERALL ACCURACY: 94.5 PERCENT

CALCULATED DECISION	CORRECT DECI	SION (PERCENT)
DECISION	asia76a	WEST76A
ASIA76A WEST75A TOTAL	190 (95.5) 9 (4.5) 199	13 (6.5) 186 (93.5) 199

G) 2-WAY REGION ANALYSIS: WEST75A, SEBC76A VARIABLES USED: 36,27,34,21 OVERALL ACCURACY: 94.2 PERCENT

							-
CALCULATED DECISION	CORR	ECT	DECI	SION	(8	PERCENT	!)
DECISION	WES	3T76	A	SE	30	76A	_
WEST76A	186	, , ,			•	5.0)	-
SEBC76A	13	(6	5.5)	190	(95.0)	
TOTAL	199			200			

H) 2-WAY REGION ANALYSIS: WEST76A, CENT76A VARIABLES USED: 21,34,35,11
OVERALL ACCURACY: 83.2 PERCENT

CALCULATED DECISION	CORRECT DECI	SION (PERCENT)
	WEST76A	CENT75A
WEST76A CENT76A TOTAL	167 (83.9)	35 (17.5) 165 (32.5) 200

i) 6-WAY RIVER ANALYSIS: ASIA76A, YUK76A, KUSK76A, BRIS76A, CENT76A, SEBC76A VARIABLES USED: 6, 7,34,17,35,16,31,58,54,27,51,36,55 OVERALL ACCURACY: 59.1 PERCENT

CALCULATED					CORRE	CT DECI	SION (PERCENT	")		
DECISION	ASI	A76A	עע	K76A	KUS	K76A	BRI	S76A	CEN	T76A	SEBC76A
ASIA76A	157 (78.9)	2 (1.0)	8 (4.0)	1 (.5)	16 (8.0)	4 (2.0
YUK76A	11 (5.5)	97 (48.5)	36 (18.0)	28 (14.2)	13 (6.5)	7 (3.5
KUSK76A	11 (5.5)	41 (20.5)	103 (51.5)	34 (17.3)	22 (11.0)	2 (1.0
BRIS76A	0 (0.0)	37 (18.5).	36 (18.0)	114 (57.9)	11 (5.5)	7 (3.5
CENT75A	20 (10,.1)	19 (9.5)	12 (6.0)	14 (7.1)	93 (49.0)	42 (21.0
SEBC76A	0 (0.0)	4 (2.0)	5 (2.5)	6 (3.0)	40 (20.0)	138 (69.0
TOTAL	199		200		200		197	-	200		200

J) 5-WAY RIVER ANALYSIS: ASIA76A, YUK76A, KUSK76A, BRIS76A, CENT76A VARIABLES USED: 5,21,35,34,16, 5,60,54
OVERALL ACCURACY: 61.7 PERCENT

CALCULATED DECISION						CORREC	T DEC	I	SION (P	ERCE	NT)			
	Α.	SI	A76A		:U	K76A	KU	Si	(76A	В	RI.	S76A	31	EN'	176A
ASIA76A	159	(84.9)	1	ί.	2.0)	9	(٤,5)	0	(0.0)	17	ζ,	9.5)
YUK76A	5	(2.5)	105	:	52.5)	51	(25.5)	30	(15.2)	16	į,	3.0)
KUSK76A	9	(4.5)	11 9	:	20.5)	39	(44.5)	34	(17.3)	16	(3.0)
BRIS76A	0	(0.01	31	7	15.5)	37	(18.5)	116	(58.9)	• 5	(3.0)
CENT76A	16	(8.0)	19	(9.5)	14	Ċ	7.0)	17	(8.6)	135	í	67.5
TOTAL	199			200	•		200			197	•		200	•	

K) 5-WAY RIVER ANALYSIS: ASIA76A, YUK76A, KUSK76A, BRIS76A, SEBC76A VARIABLES USED: 6, 7,34,17,53,52,31,51,11,58, 1,25,45,44,55 OVERALL ACCURACY: 67.7 PERCENT

CALCULATED DECISION						CORREC	TOE	;I,	SION (P	ERCE:	T)			
	AS	I	A76A	****	YU	K76A	Κι	JS	K75A	BI	RI:	S76A	S	В	276A
ASIA76A YUK76A	164 16	•	82.4) 8.0)		•	.5) 55.5)		•	3.5) 18.0)	_	(0.0) 14.7)	7 11	((3.5) 5.5)
KUSK76A BRIS76A	17 0	•	/			21.5) 19.0)	-	•	56.5) 18.5)	36 122	•	18.3) 61.9)	10 8	•	5.0) 4.0)
SEBC76A TOTAL	2 199	(1.0)	7 200	(3.5)	7 200	(3.5)	10 197	(5.1)	164 200	(32.0)

L) 5-WAY RIVER ANALYSIS: YUK76A, KUSK76A, BRIS76A, CENT76A, SEBC76A VARIABLES USED: 36,12,26,34,21,52,24, 9,11,35,37,55
OVERALL ACCURACY: 58.7 PERCENT

CALCULATED						CORREC	T DEC	IS	SION (P	ERCE	NT)			
DECISION	,	Y UI	K76A	K	JS	K75A	BR	IS	576A	CI	EN.	T76A	SE	В	C76A
YUK76A	106	(53.0)	42	(21.0)	30	(15.2)	9	(4.5)	7	(3.5)
CUSK76A	34	(17.0)	102	(51.0)	34	(17.3)	21	(10.5)	2	(1.0
BRIS76A	40	{	20.0)	34	(17.0)	113	(57.4)	11	(5.5)	6	(3.0
CENT76A	20	(10.0)	17	(8.5)	15	(7.6)	125	(62.5)	46	(23.0
SEBC76A	0	(0.0)	5	(2.5)	5	(2.5)	34	(17.0)	139	(69.5
TOTAL	200			200			197			200			200		

M) 5-WAY RIVER ANALYSIS: ASIA76A, YUK76A, KUSK76A, CENT76A, SEBC76A VARIABLES USED: 7,36,34,21,35,16, 9,31,58,28,55,39,44,24,54,27 OVERALL ACCURACY: 67.1 PERCENT

CALCULATED DECISION						CORREC	T DEC	CI	SION (P	ERCE	T)				_
500252011	A.	SI.	A75A		rui	K75A	Kt	JS	K76A	C!	EN'	T76A	SE	30	276A	-
ASIA76A	161	ζ.	80.9)	1	(.5)	9	(4.5)	16	(8.0)	ó	(3.0)	-
YUK76A	10	(5.0}	128	(54.0)	44	(22.0)	14	(7.0)	1.1	(5.5)	
KUSK76A	8	(4.0)	49	(24.5)	124	(52.0)	26	(13.0)	•	(.5)	
CENT76A	20	(10.1)	20	1	10.0)	15	(3.0)	114	(57.0)	39	(19.5)	•
SEBC76A	0	(0.0)	2	(1.0)	7	1	3.5)	30	(15.0)	: 43	ί	71.5)	
TOTAL	199			200			200			200			200			

N) 4-WAY RIVER ANALYSIS: ASIA76A, YUK75A, KUSK76A, BRIS76A VARIABLES USED: 6,35,50,54,31,58,11.39.30,57,23,42,47,49,17 OVERALL ACCURACY: 64.6 PERCENT

CALCULATED DECISION		CORRECT DECI	SION (PERCENT)
DECISION	asia76a	YUK76A	KUSK75A	BRIS76A
ASIA76A YUK76A KUSK76A BRIS76A TOTAL	22 (11.1)		7 (3.5) 42 (21.3) 120 (60.0) 31 (15.5) 200	

O) 4-WAY RIVER ANALYSIS: ASIA76A, YUK76A, KUSK76A, CENT76A VARIABLES USED: 6,34,35,16,11,60,39,54, 9,27,45,24,55 OVERALL ACCURACY: 70.2 PERCENT

CALCULATED DECISION			CORRE	CT DECI	NCIE:	PERCENT	")	
DECISION	ASI	A76A	YU	K75A	หบร	K76A	CEN.	F75A
ASIA76A YUK76A				1.0) 66.0)				,
KUSK76A CENT76A	10 (14 (,		24.0)	- ,	60.5) 8.5)	27 (141 (13.5)
TOTAL	199	1.3)	200	9.07	200	0.5)	200	10.57

P) 4-WAY RIVER ANALYSIS: ASIA76A, YUK76A, KUSK76A, SEBC76A
VARIABLES USED: 7,36,34,21,35,17,31,58,54,27, 9,24,55,60,39,45,28
OVERALL ACCURACY: 76.0 PERCENT

CALCULATED		CORRECT DECI	SION (PERCENT)
DECISION	ASIA75A	YUK76A	KUSK76A	SEBC76A
ASIA76A YUK76A KUSKT6A SEBC76A TOTAL	165 (82.9) 13 (6.5) 18 (9.0) 3 (1.5) 199	3 (1.5) 142 (71.0) 50 (25.0) 5 (2.5) 200	8 (4.0) 50 (25.0) 131 (65.5) 11 (5.5) 200	7 (3.5) 13 (6.5) 11 (5.5) 169 (84.5) 200

Q) 4-WAY RIVER ANALYSIS: YUK76A, KUSK76A, BRIS76A, CENT76A VARIABLES USED: 21,35,34,12,24,54,30,44,55 OVERALL ACCURACY: 61.1 PERCENT

CAÉCULATED DECISION			CORRE	CT DECI	NCIE	(PERCENT	2)	
DECISION	YU	K76A	หมร	K76A	BR	IS75A	CEN	T76A
YUK76A KUSK76A	,				/	(14.7) (14.7)	•	
BRISTEA CENTTEA	42 (21.0)	40 (20.0)	122	(61.3) (3.6)	17 (9.5)
TOTAL	200	,0.0,	200	3.5,	97	,	200	,,,,,

R) 4-WAY RIVER ANALYSIS: ASIA76A, YUK76A, CENTT6A, SEBC76A VARIABLES USED: 7,36,12,58,31,34,11,44,5,1,39,32 OVERALL ACCURACY: 73.6 PERCENT

CALCULATED		CORRECT DECI	SION (PERCENT	}
750232111	ASIA76A	YUK76A	CENT?6A	SEBC75A
ASIA76A YUK76A CENT76A SEBC76A TOTAL		163 (31.5)	16 (8.0) 27 (13.5) 121 (60.5) 36 (13.0) 200	9 (4.5) 8 (4.0) 38 (19.0) 145 (72.5) 200

S) 3-WAY RIVER ANALYSIS: YUK76A, KUSK76A, BRIS76A VARIABLES USED: 26,50,25,58,44,47,49,40,30,55,24 OVERALL ACCURACY: 60.0 PERCENT

CALCULATED DECISION			CORREC	T DE	CI.	SION	(}	ERCE	T)
DECISION	Y	UK	76A	Κī	JS	K76A		81	RI.	S76A
YUK76A KUSK76A BRIS76A TOTAL	39	Ċ	59.5) 19.5) 21.0)	115	(23.5 58.0 18.5)	37	Ċ	18.8) 18.8) 62.4)

the transfer of the second

T) 3-WAY RIVER ANALYSIS: ASIA76A, YUK76A, KUSK76A VARIABLES USED: 6,35,50,54,47,60,39,27,17,55,36,28 OVERALL ACCURACY: 77.8 PERCENT

CALCULATED		CORREC	T DEC	SION (ERCENT)
DECISION	ASI	A76A	YU	K76A	KUS	K76A
ASIA76A YUK76A KUSK76A _TOTAL	•	90.5) 5.0) 4.5)	144 (1.5) 72.0) 26.5)		3.0) 26.0) 71.0)

U) 3-WAY RIVER ANALYSIS: ASIA76A, YUK76A, BRIS76A VARIABLES USED: 6,35,54,31,11,58,30 OVERALL ACCURACY: 77.5 PERCENT

CALCULATED DECISION	CORRECT	DECISION (P	ERCENT)
	asia76a	YUK76A	9RIS76A
ASIA76A YUK76A BRIS76A TOTAL	170 (85.4) 29 (14.6) 0 (0.0)	8 (4.0) 142 (71.0) 50 (.25.0) 200	1 (.5) 46 (23.4) 150 (76.1)

V) 3-WAY RIVER ANALYSIS: YUK76A, CENT76A, SEBC76A VARIABLES USED: 36,12,21,34, 5,27, 9 OVERALL ACCURACY: 74.7 PERCENT

	~		
CALCULATED DECISION	CORRE	CT DECISION (P	ERCENT)
DEC151011	YUK76A	CENT76A	SEBC76A
YUK75A CENT76A SEBC75A TOTAL	170 (85.0) 25 (12.5) 5 (2.5) 200	27 (13.5) 130 (65.0) 43 (21.5) 200	9 (4.5) 43 (21.5) 148 (74.0) 200

W) 3-WAY RIVER ANALYSIS: YUK76A, KUSK76A, CENT76A VARIABLES USED: 36,21,34,11,35,55,39,24,47,60 OVERALL ACCURACY: 69.8 PERCENT

CALCULATED DECISION	CORREC'	DECISION (P	ERCENT)
DECISION	YUK76A	KUSK76A	CENT76A
YUK76A KUSK75A CENT75A TOTAL	133 (56.5) 48 (24.0) 19 (9.5) 200	51 (25.5) 132 (56.0) 17 (9.5) 200	17 (3.5) 29 (14.5) 154 (77.0) 200

X) 2-WAY RIVER ANALYSIS: YUK76A, KUSK76A
VARIABLES USED: 21,55,39,60,47,50,23,25
OVERALL ACCURACY: 74.8 PERCENT

		+
CALCULATED DECISION	CORRECT DECI	SION (PERCENT)
DECISION	YUK76A	KUSK76A
***		~~~~~~
YUK76A	149 (74.5)	50 (25.0)
KUSK76A	51 (25.5)	150 (75.0)
TOTAL	200	200

Y) 2-WAY RIVER ANALYSIS: YUK76A, CENT76A VARIABLES USED: 21,36,11,34,31,39, 1,54 OVERALL ACCURACY: 36.2 PERCENT

CALCULATED DECISION	CORRECT DEC	ISION (PERCENT)
220101011	YUK76A	CENT76A
YUK75A CENT75A TOTAL	178 (39.0) 22 (11.0) 200	33 (16.5) 167 (33.5) 200

Appendix Table C7. Decision arrays for brood year 1977 chinook salmon caught as immature age 1.2's in 1981.

A) 4-WAY REGION ANALYSIS: ASIA77 , WEST77 , CENT77 , SEBC77 VARIABLES USED: 27, 9,34,17,58,16,31,35,28,44,42,21,36,47,25,26 OVERALL ACCURACY: 80.0 PERCENT

CALCULATED		CORRECT DECI	SION (PERCENT)		
DECISION	ASIA77	WEST77	CENT77	SEBC77		
ASIA77 WEST77 CENT77 SEBC77 TOTAL	174 (87.0) 15.(7.5) 10 (5.0) 1 (.5) 200	10 (5.0) 146 (73.4) 34 (17.1) 9 (4.5) 199	11 (5.5) 22 (11.1) 147 (73.9) 19 (9.5)	1 (.5) 7 (3.5) 20 (10.1) 170 (85.9) 198		

B) 3-WAY REGION ANALYSIS: ASIAT7 , WEST77 , CENT77 TARIABLES USED: 7,28, 5,17,27,50,44 OVERALL ACCURACY: 31.3 PERCENT

CALCULATED DECISION	CORRECT	PECISION (P	ERCENT)
020131011	ASIA77	WEST77	CENT77
ASIATT WESTTT CENTTT TOTAL	179 (\$9.5) 10 (5.0) 11 (5.5) 200	9 (4.5) 152 (75.4) 38 (19.1) 199	15 (7.5) 26 (13.1) 158 (79.4) 199

C) 3-WAY REGION ANALYSIS: ASIA77 , CENT77 , SEBC77 VARIABLES USED: 27,17,28,31,21,54,34,16,44,58 OVERALL ACCURACY: 88.3 PERCENT

CALCULATED DECISION	CORREC	T DECISION (F	ERCENT)
JEG1013N	asia77	CENT77	SEBC77
ASIA77 CENT77 SEBC77 TOTAL	, , ,	15 (7.5) 168 (34.4) 16 (8.0) 199	- ,

D) 2-WAY REGION ANALYSIS: ASIA77 , CENT77
'VARIABLES USED: 27,28,25,29,26,11
OVERALL ACCURACY: 92.7 PERCENT

CALCULATED DECISION	CORRECT	DECISION	(PERCENT)
000101011	ASIA7	7 CS	ENT77
ASIATT CENTTT TOTAL	190 (9) 10 () 200		(9.5) (90.5)

E) 6-WAY RIVER ANALYSIS: ASIA77 , YUK77 , KUSK77 , BRIS77 , CENT77 , SEBC77 VARIABLES USED: 7,36,28,11,23,21,35,34,44,17, 5,50,27,54,47,40,31,48,42 OVERALL ACCURACY: 72.2 PERCENT

CALCULATED DECISION		CORRECT DECISION (PERCENT)													
	ASIA	77	YUK?7		KUS	KUSK77		BRIS77		T77	SEBC77				
ASIA77	160 (80.0)	6 (3.0)	5 (2.5)	2 (1.0)	9 (4.5)	1 (.5)			
YUK77	22 (11.0)	147 ;	73.5)	40 (20.4)	5 (2.5)	15 (7.5)	1 (.5)			
KUSK77	6 (3.0)	32 :	16.0)	100 (51.0)	28 (14.0)	11 (5.5)	1 (.5)			
BRIS77	0 (0.0)	4 (2.0)	23 (11.7)	148 (74.0)	7 (3.5)	7 (3.5)			
CENT77	11 (5.5)	11 (5.5)	24 (12.2)	3 (4.0)	141 (70.9)	22 (11.1)			
SEBC77	1 (.5)	0 (0.0)	4 (2.0)	9 (4.5)	16 (8.0)	166 (33.8)			
TOTAL	200		200	•	196		200		199		198	• •			

F) 5-WAY RIVER ANALYSIS: ASIA77 , YUK77 , KUSK77 , BRIS77 , CENT77 VARIABLES USED: 36,11,28,21,35,44,17,31,27,54,42,40, 5,12,50,23,16, 1,41,43 OVERALL ACCURACY: 71.2 PERCENT

CALCULATED DECISION						CORREC	T DE)IS	SION (P	ERCE	NT)			
DECISION	ASIA77		YUK?7		KUSK77		BRIS7?		CENT77						
ASIA77			79.0)	_	•			•	3.5)		•	.5)			5.0)
YUK77 KUSK77	21	(10.5)		•	72.5) 17.0)		•	20.9)		(2.5) 14.5)		(9.5) 4.3)
BRIS7?	1	′	.5)	2				•	10.7)		-	77.0)	13	•	/
CENT77	11		5.5)	13	•		-	,	12.2)	11	•				74.9)
TOTAL	200			200			196			200			199		

G) 5-WAY RIVER ANALYSIS: ASIA77 , YUK77 , KUSK77 , BRIS77 , SEBC77 VARIABLES USED: 7, 5,23, 6,39,31,58,34,37,12,35,27,28,42,47,36,50,32 OVERALL ACCURACY: 73.7 PERCENT

CALCULATED DECISION						CORREC	T DE	CI:	SION (P	ERCE	T)			
DECISION	A.	SI.	A77		YU	K77	K	ມຣາ	K77	BF	ì.	577	32	ВС	77
ASIA77	159	(79.5)	7	(3.5)	7	(3.5)	2	ί.	1.0)	1	ζ.	.5)
YUK77	33	(16.5)	146	(73.0)	48	(24.5)	1.1	(5.5)	ó	ŗ	3.0)
KUSK77	6	(3.0)	40	(20.0)	105	(53.5)	37	(18.5)	2	(1.0)
BRIS77	0	(0.0)	7	(3.5)	29	(14.8)	143	(71.5)	9	(4.5)
SEBC77	2	Ċ	1.0)	0	{	0.0)	7	Ċ	3.6)	7	į	3.5)	180	ţ	90.9)
TOTAL	200		-	200			196	•		200			198		

H) 4-WAY RIVER ANALYSIS: ASIA77 , YUK77 , BRIS77 , CENT77
VARIABLES USED: 36,11,28,21,35,44,34,17,31,42,40,58,27,54,37,48, 1,41,45
OVERALL ACCURACY: 82.0 PERCENT

CALCULATED DECISION		CORRECT DEC	ISION (PERCENT	')
DEC1210W	ASIA77	YUK77	BRIS77	CENT77
ASIA77 YUK77 BRIS77 CENT77 TOTAL	163 (81.5 25 (12.5 3 (1.5 9 (4.5) 169 (84.5)	4 (2.0) 19 (9.5) 168 (84.0) 9 (4.5) 200	10 (5.0) 23 (11.6) 11 (5.5) 155 (77.9) 199

I) 4-WAY RIVER ANALYSIS: YUK77 , KUSK77 , BRIS77 , CENT77 VARIABLES USED: 36,21,17,44,50,35, 5,27,16 OVERALL ACCURACY: 71.0 PERCENT

CALCULATED DECISION			CORRE	CT DECI) MCIE	PERCENT)			
DECISION	YUK7	7	KUS	K77	BRI	S77	CEN.	CENT77		
YUK77 KUSK77 BRIS77 CENT77 TOTAL	147 (7 37 (1 4 (12 (200	a.5) 2.0)	110 (11.2)	27 (151 (13.5)	14 (5.0) 7.0)		

J) 3-WAY RIVER ANALYSIS: YUK77 , KUSK77 , CENT77 VARIABLES USED: 36,16,37,44,17,21,50,26,54 OVERALL ACCURACY: 74.2 PERCENT

CALCULATED DECISION			CORREC	T DEC	CI	SION (P	ERCEN'	r)		
DECISION	1	YUK77			KUSK77			CENT77		
YUK77 KUSK77 CENT77 TOTAL	39	(75.0) 19.5) 5.5)	127	Ċ	,	15	(9.5) (7.5) (82.9)		

Appendix Table D1. Decision arrays for brood year 1970 chinook salmon caught as immature age 1.3's in 1975.

A) 4-WAY REGION ANALYSIS: ASIA70 , WEST70 , CENT70 , SEBC70 VARIABLES USED: 27, 9,34,21,44,11,45,35,49,16 OVERALL ACCURACY: 72.1 PERCENT

CALCULATED DECISION			CORRE	CT DECI	SION (PERCENT	')
DECISION	ASI	A70	WES	170	CEN	170	SEBC70
ASIA70 WEST70 CENT70 SEBC70 TOTAL	86 (10 (4 (5 (81.9) 9.5) 3.8) 4.8)		,	13 (71 (2.9) 12.5) 68.3) 16.3)	10 (7.8) 11 (3.6) 23 (18.0) 84 (65.6)

B) 3-WAY REGION ANALYSIS: ASIA70 , WEST70 , CENT70 VARIABLES USED: 6,16,34,44,11,40,12,35,22 OVERALL ACCURACY: 79.4 PERCENT

CALCULATED DECISION		CORREC	T DECI	SION (P	ERCENT)	
DEC1310.4	ASI	A70	WES	170	CENT70		
ASIA70 WEST70 CENT70 TOTAL	9 (85.7) 8.6) 5.7)	147 (16.0) 73.5) 10.5)	16 (5.8) 15.4) 78.8)	

C) 5-WAY RIVER ANALYSIS: ASIA70 , YUK70 , KUSK70 , BRIS70 , CENT70 VARIABLES USED: 6,16,34,44,35,54,11,12,45,23,22,47,31 - OVERALL ACCURACY: 61.8 PERCENT

CALCULATED DECISION						CORREC	T DEC	Z	SION (P	ERCE	ΝT)			
DECISION	Α:	SI	170		YUI	K70	Κί	JS	K70	31	RI.	S70	CE	N'	70
ASIA70	83	(79.0)	10	(5.2)	12	(6.7)	23		11.5)	 -	(4.3
YUK70	7	(6.7)	122	(63.9)	23	(12.3)	44	1	22.3)	ó	(5.3
KUSK70	4	(3.8)	15	(7.9)	93	(52.0)	50	(25.0)	6	(5.8
BRIS70	5	(4.8)	25	(13.1)	44	(24.6)	74	į,	37.0)	7	(6.7
CENT70	6	(5.7)	19	-{	9.9)	7	1	3.9)	9	(4,5)	80	¢	76.9
TOTAL	105			191			179		• .	200			104		

D) 4-WAY RIVER ANALYSIS: ASIA70 , YUK70 , BRIS70 , CENT70 VARIABLES USED: 6,16,34,44,17,11,45,54,35,22,12 OVERALL ACCURACY: 71.6 PERCENT

CALCULATED DECISION		CORRECT DECI	SION (PERCENT)
DECIDION	ASIA70	YUK70	BRIS70	CENT70
ASIA70 YUK70 BRIS70 CENT70 TOTAL		9 (4.7) 127 (66.5) 35 (13.3) 20 (10.5)	23 (11.5) 46 (23.0) 118 (59.0) 13 (6.5) 200	4 (3.8) 8 (7.7) 10 (9.6) 82 (78.3)

Appendix Table D2. Decision arrays for brood year 1971 chinook salmon caught as immature age 1.3's in 1976.

A) 4-WAY REGION ANALYSIS: ASIA71B, WEST71B, CENT71B, SEBC71B
VARIABLES USED: 7,34,21,35, 9,44, 5,40,42, 1

OVERALL ACCURACY: 65.9 PERCENT

CALCULATED DECISION	CORRECT DECISION (PERCENT)										
DECISION	ASIA71B	WEST71B	CENT71B	SEBC71B							
ASIA7:B WEST7:B CENT7:B SEBC7:B TOTAL	110 (65.5) 26 (15.5) 27 (16.1) 5 (3.0) 168	23 (11.5) 153 (76.5) 22 (11.0) 2 (1.0) 200	19 (14.4) 15 (11.4) 76 (57.6) 22 (16.7) 132	8 (4.8) 7 (4.2) 44 (26.7) 106 (64.2) 165							

B) 3-WAY REGION ANALYSIS: ASIA719, WEST718, SE9C718
VARIABLES USED: 9,34,16,35,44,11,40, 6,42,56,50
OVERALL ACCURACY: 81.8 PERCENT

CALCULATED DECISION		CORREC	T DEC	ESION (PERCENT)	
DEC1370M	AS	IA71B	WES	3 1 718	SEBC719		
ASIA713 WEST713 SEBC71B TOTAL	25		165 ((13.5) (32.5) (4.0)	• •		

C) 2-WAY REGION ANALYSIS: ASIA718, WEST718
VARIABLES USED: 17,44,34,47, 1,40,35,23,56,45
OVERALL ACCURACY: 96.0 PERCENT

D) 2-WAY REGION ANALYSIS: ASIA718, SEBC718
VARIABLES USED: 28,34,21,23,50,42,11,44,43,45
OVERALL ACCURACY: 92.2 PERCENT

CALCULATED DECISION	CORRECT DECISI	SION (PERCENT)					
	ASIA718	SEBC7!B					
ASIA71B SEBC71B TOTAL	11 (6.5) 1	15 (9.1) 50 (90.9) 65					
~~~~~~							

Appendix Table D3. Decision arrays for brood year 1972 chinook salmon caught as immature age 1.3's in 1977.

A) 4-WAY REGION ANALYSIS: ASIA72B, WEST72B, CENT72B, SEBC72B VARIABLES USED: 12,26,49,21,34,53 OVERALL ACCURACY: 68.6 PERCENT

CALCULATED DECISION	******	CORRECT DECI	SION (PERCENT	>
DECISION	asia72B	WEST72B	CENT72B	SEBC72B
ASIA72B WEST72B CENT72B SEBC72B TOTAL	130 ( 69.9) 36 ( 19.4) 18 ( 9.7) 2 ( 1.1) 186	17 ( 8.5) 154 ( 77.0) 19 ( 9.5) 10 ( 5.0) 200	32 ( 16.5) 18 ( 9.3) 102 ( 52.6) 42 ( 21.6) 194	2 ( 1.3) 5 ( 3.1) 33 ( 20.8) 119 ( 74.8) 159

B) 3-WAY REGION ANALYSIS: ASIA728, WEST728, CENT728 VARIABLES USED: 6,22, 9,34,16,35,45,47 OVERALL ACCURACY: 74.4 PERCENT

CALCULATED DECISION		CORREC	T DECI	SION (P	ERCENT	')
DECISION	ASI	A72B	WES	T72B	CEN	T72B
ASIA72B WEST72B CENT72B TOTAL	32 (	71.5) 17.2) 11.3)	158 (	10.0) 79.0) 11.0)	14 (	20.1) 7.2) 72.7)

C) 3-WAY REGION ANALYSIS: ASIA72B, WEST72B, SEBC72B VARIABLES USED: 7, 6,34,35,21,46,49,41 OVERALL ACCURACY: 83.6 PERCENT

CALCULATED DECISION		CORRECT	DECISION	(PERCENT)
2201013.1	ASI	A72B	WEST72B	SEBC72B
ASIAT2B WEST72B SEBC72B TOTAL	36 (	19.4)	22 ( 11. 166 ( 83. 12 ( 6. 200	0) 10 ( 6.3)

D) 2-WAY REGION ANALYSIS: ASIA72B, WEST72B VARIABLES USED: 6, 3 OVERALL ACCURACY: 84.6 PERCENT

CALCULATED DECISION	CORRECT DECI	SION (PERCENT)
2013101	ASIA72B	WEST729
ASIA72B WEST72B TOTAL	153 ( 82.3) 33 ( 17.7) 186	26 ( 13.0) 174 ( 37.0) 200

## Appendix Table D3. Continued.

E) 2-WAY REGION ANALYSIS: WEST72B, CENT72B VARIABLES USED: 36,11,49,21,35,34,40 OVERALL ACCURACY: 88.8 PERCENT

CALCULATED DECISION	CORRECT DECI	SION (PERCENT)
55015101	WEST72B	CENT72B
WEST72B CENT72B TOTAL	178 ( 39.0) 22 ( 11.0) 200	22 ( 11.3) 172 ( 88.7) 194

F) 6-WAY RIVER ANALYSIS: ASIA72B, YUK72B, KUSK72B, BRIS72B, CENT72B, SEBC72B VARIABLES USED: 7, 36,34,21,35, 5,11,42,49, 1,39,44,48,59 OVERALL ACCURACY: 58.3 PERCENT

CALCULATED DECISION			CORRECT DECI	SION (PERCENT	')	
DECESION	ASIA72B	YUK72B	KUSK72B	BRIS72B	CENT723	383C72 <b>B</b>
ASIA72B	120 ( 64.5)	12 ( 6.0)	10 ( 5.0)	10 ( 5.0)	38 ( 19.6)	2 ( 1.3)
YUK72B	21 ( 11.3)	121 ( 60.5)	39 ( 19.5)	27 ( 13.5)	10 ( 5.2)	2 ( 1.3)
KUSK72B	24 ( 12.9)	30 ( 15.0)	82 ( 41.0)	34 ( 17.0)	3 ( 1.5)	3 ( 1.9)
BRIS729	3 ( 4.3)	16 ( 8.0)	50 ( 25.0)	121 ( 60.5)	11 ( 5.7)	3 ( 1.9)
CENT72B	12 ( 6.5)	18 ( 9.0)	10 ( 5.0)	4 ( 2.0)	104 ( 53.5)	38 ( 23.9)
SEBC72B	1 ( .5)	3 ( 1.5)	9 ( 4.5)	4 ( 2.0)	28 ( 14.4)	111 ( 59.3)
TOTAL	186	200	200	200	194	159

G) 5-WAY RIVER ANALYSIS: ASIA72B, YUK72B, KUSK72B, 9RIS72B, CENT72B VARIABLES USED: 6,35,34,16,36,11, 1,17,42,22,39,44 OVERALL ACCURACY: 59.3 PERCENT

CALCULATED				CORREC	T DEC	SION (F	ERCENT	[)		
DECISION	ASIA	723	Ϋ́	JK72B	KUS	K72B	37.	S72B	ÇEN	T728
ASIA723	124 (	66.7)	15	7.5)	12	(6.0)	10 (	5.0)	37 ′	19.1)
YUK723	<b>:9</b> (	10.2)	114 (	57.0)	40	20.0)	25 3	12.5)	3 (	4.1)
KUSK72B	21 (	11.3)	36 (	(0.81)	87	(43.5)	33 (	16.5)	3 (	4,1)
BRIS72B	3 (	4.3)	17 (	3.5)	47	23.5)	124	62.0)	10 :	5.2)
CENT72B	14 (	7.5)	18	(9.0)	14	7.0)	8 (	4.0)	131 (	57.5)
TOTAL	186		200		200		200		194	

H) 4-WAY RIVER ANALYSIS: ASIA72B, YUK72B, KUSK72B, BRIS72B VARIABLES USED: 7,34,59,36,11,32,42,21,35 OVERALL ACCURACY: 60.7 PERCENT

CALCULATED DECISION			SION (PERCENT	
05015101	ASIA728	YUK723	KUSK72B	BRIS72B
ASIA72B YUK72B KUSK72B BRIS72B TOTAL	139 ( 74.7) 17 ( 9:1) 20 ( 10.8) 10 ( 5.4) 186	21 ( 10.5) 122 ( 51.0) 37 ( 18.5) 20 ( 10.0) 200	19 ( 9.5) 38 ( 19.0) 90 ( 45.0) 53 ( 26.5) 200	9 ( 4.5) 27 ( 13.5) 40 ( 20.0) 124 ( 62.0) 200

# Appendix Table D3. Continued.

1) 4-WAY RIVER ANALYSIS: ASIA72B, YUK72B, KUSK72B, CENT72B VARIABLES USED: 6,34,21,35, 1,11, 9,42,36,22,39 OVERALL ACCURACY: 65.6 PERCENT

CALCULATED DECISION		CORRECT DECI	SION (PERCENT	)
	ASIA72B	YUK723	KUSK72B	CENT72B
ASIA729 YUK72B KUSK72B CENT72B TOTAL	123 ( 66.1) 17 ( 9.1) 30 ( 16.1) 16 ( 8.6) 186	14 ( 7.0) 120 ( 60.0) 46 ( 23.0) 20 ( 10.0) 200	15 ( 7.5) 39 ( 19.5) 131 ( 65.5) 15 ( 7.5) 200	34 ( 17.5) 8 ( 4.1) 15 ( 7.7) 137 ( 70.6) 194

J) 3-WAY RIVER ANALYSIS: ASIA72B, YUK72B, KUSK72B VARIABLES USED: 6,35,12,34,42,39,55 OVERALL ACCURACY: 69.1 PERCENT

CALCULATED DECISION			CORREC	T DE	JI.	SION (P	ERÇE	T	)	
DECISION	AS	IA	723	`	(U)	K723	K	JSI	K72B	-
ASIA72B YUK72B KUSK72B TOTAL	13	(	76.3) 7.0) 16.7)	128	(	11.0) 64.0) 25.0)	пО	Ċ	13.0) 20.0) 67.0)	

Appendix Table D4. Decision arrays for brood year 1973 chinook salmon caught as immature age 1.3's in 1978.

A) 4-WAY REGION ANALYSIS: ASIA73B, WEST73B, CENT73B, SEBC73B VARIABLES USED: 9, 7,34,21,25,44,53
OVERALL ACCURACY: 69.2 PERCENT

CALCULATED		CORRECT DECI	SION (PERCENT	)
DECISION	ASIA73B	WEST73B	CENT73B	SEBC73B
ASIA73B WEST73B CENT73B SEBC73B TOTAL	75 ( 57.3) 30 ( 22.9) 25 ( 19.1) 1 ( .8)	25 ( 12.6) 162 ( 81.8) 10 ( 5.1) 1 ( .5)	38 ( 24.8) 9 ( 5.9) 85 ( 55.6) 21 ( 13.7)	9 ( 4.6) 4 ( 2.0) 22 ( 11.2) 161 ( 82.1)

B) 3-WAY REGION ANALYSIS: ASIA73B, WEST73B, CENT73B VARIABLES USED: 21,52,34, 5,26,49,44,17,31,36 OVERALL ACCURACY: 68.8 PERCENT

CALCULATED DECISION		CORREC	T DEC	ISIO	N (P	ERCE	(T)	)
DECISION	ASIA	73B	SW	ST73	В	C	EN?	73B
ASIA73B WEST739 CENT73B TOTAL	33 (	58.8) 25.2) 16.0)	26 159 13 198		• 3)	14	(	23.5) 9.2) 67.3)

C) 3-WAY REGION ANALYSIS: ASIA73B, WEST73B, SEBC73B VARIABLES USED: 7,34,25,21,26,32 OVERALL ACCURACY: 32.9 PERCENT

CALCULATED DECISION	CORRECT	DECISION	(PERCENT)		
DEC13105	ASIA73B	WEST73B	\$23C73B		
ASIA73B WEST73B SEBC73B TOTAL	95 ( 72.5) 34 ( 26.0) 2 ( 1.5) 131	26 ( 13. 171 ( 86. 1 ( .!	4) 4 ( 2.0)		

D) 3-WAY REGION ANALYSIS: WEST73B, CENT73B, SEBC73B
VARIABLES USED: 7,34,21,25,44,11,53,23, 5,27,59,31,51
OVERALL ACCURACY: 84.5 PERCENT

CALCULATED DECISION	CORRECT	DECISION (F	'SRCENT)		
DECIDION	WEST73B	CENT73B	SEBC73B		
WEST73B CENT73B SEBC73B TOTAL		15 ( 10.5) 123 ( 30.4) 14 ( 9.2) 153	5 ( 3.1) 26 ( 13.3) 164 ( 33.7) 196		

## Appendix Table D4. Continued.

E) 2-WAY REGION ANALYSIS: ASIA73B, WEST73B VARIABLES USED: 6,50,25,26,16,39 OVERALL ACCURACY: 81.0 PERCENT

CALCULATED DECISION	CORRECT DECI	SION (PERCENT)			
DECISION	ASIA73B	WEST73B			
ASIA73B WEST73B TOTAL	99 ( 75.6) 32 ( 24.4) 131	27 ( 13.6) 171 ( 86.4) 198			

F) 2-WAY REGION ANALYSIS: WEST73B, CENT73B VARIABLES USED: 21,52,49,35,51,11,31,37 OVERALL ACCURACY: 89.8 PERCENT

CALCULATED DECISION	CORRECT DECI	SION (PERCENT)				
5151510N	WEST73B	CENT73B				
WEST73B CENT73B TOTAL	177 ( 89.4) 21 ( 10.6) 198	15 ( 9.8) 138 ( 90.2) 153				

G) 5-WAY RIVER ANALYSIS: YUK73B, KUSK73B, BRIS73B, CENT73B, SEBC73B VARIABLES USED: 9,52, 7,34,21,44,26, 1, 5,50,57,31,55,23,25 OVERALL ACCURACY: 66.0 PERCENT

CALCULATED DECISION						CORREC	T DEC	Ι	SION (P	ERCE	NT	)		
DECISION	3	(()	K73B	K	JS	к73В	В	łI.	S73B	C	EN	T73B	SEB	C73B
YUK73B	106	(	53.3)	18	ζ.	20.0)	14	(	7.0}	14	(	9.2)	3 (	1.5)
KUSK73B	50	(	25.1)	45	Ċ	50.0)	33	(	16.6)	5	(	3.3)	3 (	1.5)
BRIS73B	28	(	14.1)	19	ĺ.	21.1)	146	(	73.4)	9	(	5.9)	2 (	1.0)
CENT73B	12	(	6.0)	7	(	7.8)	5	(	2.5)	110	(	71.9)	28 (	14.3)
SEBC73B	3	Ċ	1.5)	1	Ċ	1.1)	1	Ċ	.5)	15	(	9.3)	:60 (	\$1.6)
TOTAL	199	•	• •	90	•	-	199	•		153	-	-	196	

Appendix Table D5. Decision arrays for brood year 1974 chinook salmon caught as immature age 1.3's in 1979.

A) 4-WAY REGION ANALYSIS: ASIA74B, WEST74B, CENT74B, SEBC74B VARIABLES USED: 9,27,34,16,36, 5,53,54, 6,28,22,39,50 OVERALL ACCURACY: 68.9 PERCENT

CALCULATED DECISION		CORRECT DECI	SION (PERCENT	)	
DECISION	ASIA743	WEST748	CENT74B	SEBC74B	
ASIA748 WEST74B CENT74B SEBC748 TOTAL	109 ( 73.2) 24 ( 16.1) 6 ( 4.0) 10 ( 6.7) 149	19 ( 9.6) 156 ( 78.3) 18 ( 9.1) 5 ( 2.5) 198	7 ( 9.3) 8 ( 10.7) 39 ( 52.0) 21 ( 28.0) 75	9 ( 4.6) 9 ( 4.6) 37 ( 19.0) 140 ( 71.8) 195	

B) 3-WAY REGION ANALYSIS: ASIA743, WEST748, CENT748 VARIABLES USED: 5,16,34,26,27 OVERALL ACCURACY: 76.7 PERCENT

CALCULATED		CORRECT	DECIS	E) NCI	PERCENT)	
DECISION	ASIA	.748	WEST	748	CENT	748
ASIA748 WEST748 CENT743 TOTAL		16.8) 7.4)	150 (	9.1) 30.3) 10.1)	, ,	14.7) *2.0) *3.3)

Appendix Table D6. Decision arrays for brood year 1975 chinook salmon caught as immature age 1.3's in 1980.

A) 4-WAY REGION ANALYSIS: ASIA75B, WEST75B, CENT75B, SEBC75B VARIABLES USED: 6, 7,34,17,31,44,35,30,57 OVERALL ACCURACY: 71.8 PERCENT

CALCULATED		CORRECT DECI:	SION (PERCENT	)
DECISION	ASIA75B	WEST75B	CENT75B	SEBC75B
ASIA75B WEST75B CENT75B SEBC75B TOTAL	71 ( 72.4) 6 ( 6.1) 20 ( 20.4) 1 ( 1.0) 98	4 ( 2.0) 168 ( 34.4) 17 ( 8.5) 10 ( 5.0) 199	9 ( 14.1) 9 ( 14.1) 35 ( 54.7) 11 ( 17.2) 64	2 ( 1.0) 12 ( 6.0) 35 ( 17.5) 151 ( 75.5) 200

B) 3-WAY REGION ANALYSIS: ASIA75B, WEST75B, CENT75B VARIABLES USED: 6,26,53,34,21,31,35 OVERALL ACCURACY: 75.9 PERCENT

CALCULATED DECISION			CORREC	T DE	CI:	SION (P	ERCENT	')
DECISION	ASIA75B			WEST75B			CENT75B	
ASIA75B WEST75B CENT75B TOTAL	8	Ċ	72.4) 8.2) 19.4)	-	Ċ	2.5) 87.9) 9.5)	11 (	15.6) 17.2) 67.2)

C) 3-WAY REGION ANALYSIS: ASIA758, WEST758, SEBC758
VARIABLES USED: 6, 7,34,17,31,44,35,39,21,52,57,30,58
OVERALL ACCURACY: 88.2 PERCENT

CALCULATED DECISION	CORRE	PERCENT)			
DEC1310N	ASIA75B	WEST75B	SEBC75B		
ASIA75B WEST75B SEBC75B TOTAL	79 ( 80.6) 15 ( 15.3) 4 ( 4.1) 98	184 ( 92.5)	4 ( 2.0) 13 ( 6.5) 183 ( 91.5) 200		

D) 3-WAY REGION ANALYSIS: WEST75B, CENT75B, SEBC75B VARIABLES USED: 6,34,21,35,48,60 OVERALL ACCURACY: 76.9 PERCENT

CALCULATED DECISION	CORRECT	DECISION (F	PERCENT)		
DECISION	WEST75B	CENT75B	SEBC75B		
WEST75B CENT75B SEBC75B TOTAL	177 ( 88.9) 14 ( 7.0) 8 ( 4.0) 199	12 ( 18.8) 43 ( 57.2) 9 ( 14.1) 64	10 ( 5.0) 41 ( 20.5) 149 ( 74.5) 200		

#### Appendix Table D6. Continued.

E) 2-WAY REGION ANALYSIS: WEST75B, CENT75B VARIABLES USED: 6,36,21,22 OVERALL ACCURACY: 86.9 PERCENT

CALCULATED DECISION	CORR	ECT	DECIS:	CON	( ;	PERCENT)	
DECISION	WE	ST7	В	CENT75B			
WEST75B CENT75B TOTAL	184 15 199		2.5) '.5)			13.3)	

F) 6-WAY RIVER ANALYSIS: ASIA75B, YUK75B, KUSK75B, BRIS75B, CENT75B, SEBC75B VARIABLES USED: 6, 7,34,17,30,35,12,44,31,48,58,11
OVERALL ACCURACY: 60.4 PERCENT

CALCULATED DECISION					CORRE	CT DECI	O NGIE	PERCENT	)			
	ASIA	758	YUY	758	KUS	K75B	BRI:	S75B	CEN	7753	323	C75B
ASIA75B	71 (	72.4)	2 (	1.3)	4 (	2.1)	1 (	.5)	11 (	17.2)	3 (	1.5)
YUK753	5 (	5.1)	144	72.0)	26 (	13.4)	29 (	14.7)	7.5	(9.9)	14 (	7.0)
KUSK75B	10 (	10.2)	19 (	9.5)	96 (	49.5)	58 (	.29.4)	4 (	ó.3)	3 (	1.5)
BRIS75B	0 (	.0)	16 (	8.3)	54 (	27.3)	95 (	48.2)	2 (	3.1)	ĵ (	3.0)
CENT75B	12 (	12.2)	10 (	5.0)	<b>ó</b> (	3.1)	9 (	4.6)	30	-5.9)	27 (	13.5)
SEBC75B	0 (	.0)	9 (	4.5)	8 (	4.1)	5 (	2.5)	10 1	15.5)	1-7	73.5)
TOTAL	98		200		194		• 97		54		200	

G) 5-WAY RIVER ANALYSIS: ASIA75B, YUK75B, KUSK75B, BRIS75B, CENT75B VARIABLES USED: 6,17,26,53, 1,52,44,34,21,27,31,22 OVERALL ACCURACY: 61.4 PERCENT

CALCULATED NCISION		CORREC	T DECISION (	PERCENT)	
	ASIA75B	YUK753	KUSK75B	BRIS75B	CENTT5B
ASIA75B	65 ( 66.3)	2 ( 1.0)	4 ( 2.1)	1 ( .5)	11 ( '7.2)
YUK75B	5 ( 5.1)	150 ( 75.0)	20 ( 10.3)	29 ( 14.7)	7 ( '0,9)
KUSK753	11 ( 11.2)	21 ( 10.5)	99 ( 51.0)	58 ( 29.4)	3 ( 4.7)
3RI375B	0 ( .0)	14 ( 7.0)	63 ( 32.5)	100 ( 50.8)	2 ( 3.1)
CENT75B	17 ( 17.3)	13 ( 6.5)	8 ( 4.1)	9 (. 4.5)	41 ( 54.1)
TOTAL	98	200	194	197	64

H) 5-WAY RIVER ANALYSIS: ASIA758, YUK758, KUSK758, BRIS758, SEBC758 VARIABLES USED: 6, 7,34,17,35,12,31,58,48,44,27,26,39,32 OVERALL ACCURACY: 67.3 PERCENT

CALCULATED DECISION				CORREC	T DECI	SION (?	ERCENT	')		
	ASI	A753	YU.	K753	KUS	K75B	BRI	S758	,SE	3C753
ASIA75B	71 (	72.4)		1.0)	4 (		3 (	1.5)	ų,	( 2.0)
YUK75B	5 (	6.1)	146 (	73.0)	24 (	12.4)	28 (	14.2)	15	3.0)
KUSK75B	17 (	17.3)	25 (	12.5)	102 (	52.6)	54 (	27.4)	4 -	( 2.0)
3RIS75B	1 (	1.0)	13 (	9.0)	57 {	29.4)	106 (	53.8)	7	3.5)
SEBC75B	3 (	3.1)	9 (	4.5)	7 (	3.6)	6 (	3.0)	169	(84.5)
TOTAL	98		200		194		197	•	200	

## Appendix Table D6. Continued.

I) 4-WAY RIVER ANALYSIS: ASIA75B, YUK75B, KUSK75B, CENT75B VARIABLES USED: 6,17, 7,34, 5,35,44,30,32,31,40,50 OVERALL ACCURACY: 75.4 PERCENT

CALCULATED DECISION		CORRECT DECI	SION (PERCENT	)
DECISION	ASIA75B	YUK753	KUSK75B	CENT75B
ASIA75B YUK75B KUSK75B CENT75B TOTAL	73 ( 74.5) 4 ( 4.1) 5 ( 5.1) 16 ( 16.3) 98	2 ( 1.0) 154 ( 77.0) 30 ( 15.0) 14 ( 7.0) 200	5 ( 2.6) 23 ( 11.9) 155 ( 79.9) 11 ( 5.7) 194	10 ( 15.6) 6 ( 9.4) 3 ( 4.7) 45 ( 70.3) 64

J) 4-WAY RIVER ANALYSIS: ASIA75B, YUK75B, KUSK75B, SEBC75B VARIABLES USED: 5, 7,34,17,16,31,44,35,58,48,52,39,32,25,55 OVERALL ACCURACY: 81.1 PERCENT

CALCULATED DECISION		CORRECT DECI	SION (PERCENT	)
DECISION	ASIA75B	YUK75B	KUSK75B	SEBC75B
ASIA75B YUK75B KUSK75B SEBC75B TOTAL	75 ( 76.5) 5 ( 5.1) 16 ( 16.3) 2 ( 2.0) 98	2 ( 1.0) 160 ' 80.0) 30 ( 15.0) 8 ( 4.0) 200	4 ( 2.1) 23 ( 11.9) 158 ( 81.4) 9 ( 4.6) 194	3 ( 1.5) 18 ( 9.0) 6 ( 3.0) 173 ( 86.5) 200

K) 4-WAY RIVER ANALYSIS: YUK75B, KUSK75B, BRIS75B, CENT75B VARIABLES USED: 36,17, 9,11,35,44,34,22,60,24,52 OVERALL ACCURACY: 66.0 PERCENT

CALCULATED DECISION		CORRECT DECI	SION (PERCENT)	
2010101011	YUK75B	KUSK75B	BRIS75B	CENT75B
YUK75B KUSK75B BRIS75B CENT75B TOTAL	157 ( 78.5) 20 ( 10.0) 11 ( 5.5) 12 ( 6.0) 200	22 ( 11.3) 107 ( 55.2) 56 ( 28.9) 9 ( 4.6) 194	25 ( 12.7) 61 ( 31.0) 103 ( 52.3) 8 ( 4.1) 197	7 ( 10.9) 4 ( 6.3) 3 ( 4.7) 50 ( 78.1) 64

L) 3-WAY RIVER ANALYSIS: ASIA758, YUK758, KUSK758
VARIABLES USED: 6,17,26, 5,34,44,31,52,16
OVERALL ACCURACY: 82.4 PERCENT

CALCULATED DECISION	CORRECT	DECISION (P	ERCENT)
DECISION	ASIA75B	YUK75B	KUSK75B
ASIA75B YUK75B KUSK75B TOTAL	79 ( '80.6) 6 ( 6.1) 13 ( 13.3) 98	4 ( 2.0) 166 ( 33.0) 30 ( 15.0) 200	6 ( 3.1) 26 ( 13.4) 162 ( 83.5) 194

## Appendix Table D6. Continued.

M) 3-WAY RIVER ANALYSIS: YUK759, KUSK758, CENT758 VARIABLES USED: 5,17,36, 7,44, 9,34,52,30,50 OVERALL ACCURACY: 81.2 PERCENT

CALCULATED DECISION			CORREC	T DE	CI.	SION (PE	ERCENT	r)
DECISION	1	Ü	K75B	K	JS	K75B	CE	17758
YUK75B KUSK75B CENT75B TOTAL		ĺ	79.5) 14.5) 6.0)	164	•	10.8) 34.5) 4.6)	5 (	( 10.9) ( 9.4) ( 79.7)

# Appendix Table D7. Decision arrays for brood year 1976 chinook salmon caught as immature age 1.3's in 1981.

A) 4-WAY REGION ANALYSIS: ASIA76B, WEST76B, CENT76B, SEBC76B VARIABLES USED: 6,21,34,35,12,60,25,52,44,11, 1,32,49,22 OVERALL ACCURACY: 73.4 PERCENT

CALCULATED DECISION		CORRECT DECI	SION (PERCENT	)
DECISION	ASIA76B	WEST76B	CENT768	SEBC76B
ASIA76B WEST76B CENT76B SEBC76B TOTAL	163 ( 81.9) 7 ( 3.5) 17 ( 8.5) 12 ( 6.0) 199	3 ( 1.5) 155 ( 77.5) 28 ( 14.0) 14 ( 7.0) 200	12 ( 5.0) 28 ( 14.0) 127 ( 63.5) 33 ( 16.5) 200	12 ( 6.0) 5 ( 2.5) 42 ( 21.0) 141 ( 70.5) 200

B) 3-WAY REGION ANALYSIS: ASIA76B, WEST76B, CENT76B VARIABLES USED: 7,21,35,17,60,44,34,25,52,49,32 OVERALL ACCURACY: 81.8 PERCENT

CALCULATED DECISION		CORRECT	DECIS	SION (P	ERCENT)	
DECISION	ASIA	76B	WES?	763	CENT7	'6B
ASIA76B WEST76B CENT76B TOTAL		3.0) 8.5)	164 (	3.5) 32.0) 14.5)	21 ( 1 29 ( 1 150 ( 7 200	4.5)

C) 3-WAY REGION ANALYSIS: WEST76B, CENT76B, SEBC76B VARIABLES USED: 36,12,30,24,27,57,51,21,34, 6,44,58 OVERALL ACCURACY: 74.0 PERCENT

CALCULATED DECISION	CORREC	T DECISION (	PERCENT)
25013103	WEST76B	CENT76B	SEBC76B
WEST76B CENT76B SEBC76B TOTAL			6 ( 3.0) 37 ( 18.5) 157 ( 78.5) 200

D) 6-WAY RIVER ANALYSIS: ASIA76B, YUK76B, KUSK76B, BRIS76B, CENT76B, SEBC76B; VARIABLES USED: 6, 7,34,17,25,52,44,25,11,27,54, 9,60,24,59,39 OVERALL ACCURACY: 59.6 PERCENT

CALCULATED DECISION				CORRECT DEC	ISION (PERCENT	(1)	
	ASI	A76B	YUK76B	KUSK76B	BRIS76B	CENT76B	SEBC763
ASIA76B	150 (	75.4)	4 ( 2.0	3 ( 1.5)	1 ( ,5)	15 ( 7.5)	10 ( 5.0)
YUK76B	9 (	4.5)	107 ( 53.5)	45 ( 22.5)	21 ( 10.5)	11 ( 5.5)	5 ( 2.5)
KUSK76B	14 (	7.0)	43 ( 21.5	88 ( 44.0)	27 ( 13.5)	15 ( 7.5)	2 ( 1.0)
BRIS76B	0 (	.0)	24 ( 12.0)	37 ( 18.5)	123 ( 61.5)	15 ( 7.5)	7 ( 3.5)
CENT76B	17 (	8.5)	19 ( 9.5	24 ( 12.0)	18 ( 9.0)	113 ( 56.5)	43 ( 21.5)
SEBC76B	9 (	4.5)	3 ( 1.5)	3 ( 1.5)	10 ( 5.0)	31 ( 15.5)	133 ( 66.5)
TOTAL	199		200	200	200	200	200

### Appendix Table D7. Continued.

E) 5-WAY RIVER ANALYSIS: ASIA76B, YUK76B, KUSK76B, BRIS76B, CENT76B VARIABLES USED: 6,21,35,34,60,25,52,12,24,59,44,17,39,31 OVERALL ACCURACY: 62.1 PERCENT

CALCULATED DECISION					,	CORREC	T DEC	:I	SION (P	ERCE	T	)			
DECISION	A.S	SI	A76B	,	(U)	K76B	Kt	S	K76B	31	₹I.	S76B	CS	N1	[75B
ASIA76B	164	(	82.4)	3	(	4.0)	5	(	2.5)	3	(	1.5)	:6	ζ.	8.0)
YUK76B	6	(	3.0)	106	(	53.0)	47	1	23.5)	23	(	11.5)	10	(	5.0)
KUSK76B	1.1	(	5.5)	37	:	18.5)	91	(	45.5)	36	(	18.0)	16	(	8.0)
3RIS768	0	(	.0)	33	(	16.5)	37	(	18.5)	116	(	58.0)	15	Ċ	7.5)
CENT76B	18	Ċ	9.3)	16	(	3.0)	20	:	10.0)	22	(	11.0)	143	(	71.5)
TOTAL	199			200			200			200			200		

F) 5-WAY RIVER ANALYSIS: YUK76B, KUSK76B, BRIS76B, CENT76B, SEBC76B VARIABLES USED: 36,12,35,21,34,24,54,59,32, 9,39,30 OVERALL ACCURACY: 59.7 PERCENT

CALCULATED DECISION		С	ORRECT DECI	SION (P	ERCENT	)		
DECISION	YUK76	B KUSK7	6B BRI	:S76B	CEN	76B	SEB	C76B
YUK76B	107 ( 53	.5) 43 ( 2	1.5) 24 (	12.0)	12 (	6.0)	4 (	2.0)
KUSK76B	46 ( 23	.0) 98 (4	9.0) 23 (	14.0)	15 (	7.5)	3 (	1.5)
BRIS76B	29 ( 14	.5) 37 ( 1	3.5) 122 (	51.3)	16 (	3.0)	7 (	3.5)
CENT76B	14 ( 7	.0) 18 (	9.0) 18 (	9.0)	119 (	59.5)	35 (	17.5)
SEBC76B	4 ( 2	.0) 4 (	2.0) 9 (	4.0)	38 (	19.0)	151 (	75.5)
TOTAL	200	200	200		200	•	200	

G) 5-WAY RIVER ANALYSIS: ASIA76B, YUK76B, BRIS76B, CENT76B, SEBC76B VARIABLES USED: 6, 7,34,17,35,12,60,54,27,44, 9,59,39,26,25 OVERALL ACCURACY: 68.3 PERCENT

CALCULATED DECISION						CORREC	T DEC	I	SION (P	ERCEN	T	)		
DECISION	AS	SI	A76B		Y U !	(76B	BR	I	S76B	CE	N'	1768	SES	C763
ASIA76B	155	(	77.9)	5	ί	3.0)	1	ζ.	.5)	19	(	9.5)	12 (	6.3
YUK76B	15	(	7.5)	134	(	67.0)	29	Ţ	14.5)	14	(	7.3)	7 (	3.5
BRIS76B	2	(	1.0)	37	(	18.5)	138	Ċ	59.0)	2-1	1	10.5)	5 (	2.5
CENT76B	17	(	8.5)	19	(	9.5)	21	ţ	10.5)	118	(	59.0)	39 (	19.5
SEBC76B	10	Ċ	5.0)	4	(	2.0)	11	(	5.5)	28	Ċ	14.0)	137 (	68.5
TOTAL	199	•		200			200			200			200	

H) 4-WAY RIVER ANALYSIS: ASIA76B, YUK76B, BRIS76B, CENT76B VARIABLES USED: 6,21,35,50,34,16,11,54,17,44,59,31,25 OVERALL ACCURACY: 72.7 PERCENT

CALCULATED DECISION		CORRECT DECI	SION (PERCENT	)
DEC13203	ASIA76B	YUK76B	BRIS76B	CENT76B
ASIA76B YUK76B BRIS76B CENT76B TOTAL	171 ( 35.9) 10 ( 5.0) 2 ( 1.0) 16 ( 3.0) 199	11 ( 5.5) 131 ( 55.5) 38 ( 19.0) 20 ( 10.0) 200	3 ( 1.5) 34 ( 17.0) 139 ( 59.5) 24 ( 12.0) 200	18 ( 9.0) 18 ( 9.0) 24 ( 12.0) 140 ( 70.0) 200

### Appendix Table D7. Continued.

I) 4-WAY RIVER ANALYSIS: ASIA76B, YUK76B, BRIS76B, SEBC76B VARIABLES USED: 6, 7,34,35,17,60,54 OVERALL ACCURACY: 79.4 PERCENT

CALCULATED DECISION				COR	RE	CT DECI	SION	(	PERCENT	')			
DECISION	ASIA76B			YUK76B			SRIS76B			Si	SEBC76B		
ASIA76B YUK76B	178 10	•	89.4) 5.0)	_	( (	4.0) 75.0)	2	•	1.0)	22	(	11.0) 4.5)	
BRIS76B SEBC76B TOTAL	3 8 199	(	1.5)		(	16.5) 4.5)	142 15 200	-	71.0)	5 164 200	(	2.5) 82.0)	

J) 4-WAY RIVER ANALYSIS: ASIA76B, YUK76B, CENT76B, SEBC76B VARIABLES USED: 6,21,34,12,35,60,25,52,59,32,39,11 OVERALL ACCURACY: 73.0 PERCENT

CALCULATED DECISION		CORRECT DECI	SION (PERCENT	)	
00010101	ASIA76B	YUK768	CENTT6B	SEBC76B	
ASIA76B YUK76B CENT76B SEBC76B TCTAL	164 ( 82.4) 11 ( 5.5) 15 ( 7.5) 9 ( 4.5) 199	6 ( 3.0) 160 ( 80.0) 28 ( 14.0) 6 ( 3.0) 200	18 ( 9.0) 29 ( 14.5) 120 ( 50.0) 33 ( 16.5) 200	13 ( 6.5) 7 ( 3.5) 41 ( 20.5) 139 ( 69.5) 200	

K) 3-WAY RIVER ANALYSIS: YUK76B, CENTT6B, SEBCT6B VARIABLES USED: 36,12,21,34,60,54 OVERALL ACCURACY: 75.5 PERCENT

CALCULATED		CORREC	T DEC	SION (	ERCENT	)
55015150	YU	К76В	CE	IT76B	SEB	C76B
YUK76B CENT76B SEBC76B TOTAL	24 (	86.5) 12.0) 1.5)	132 (	,		3 /

L) 3-WAY RIVER ANALYSIS: ASIA769, YUK768, CENT768 VARIABLES USED: 6,21,35,60,34,16,11,39,17,25,31 OVERALL ACCURACY: 81.1 PERCENT

CALCULATED DECISION	C	ORRECT	DECISION	(PERCENT)	
	ASIA7	5B	YUK76B	CENT	76B
ASIA76B YUK76B CENT76B TOTAL	172 ( 80 10 ( 17 ( 199	5.0) 3.5)	12 ( 6.0 166 ( 83.0 22 ( 11.0	31 (	15.5)

## Appendix Table D7. Continued.

M) 3-WAY RIVER ANALYSIS: ASIA76B, YUK76B, SEBC76B VARIABLES USED: 6, 7,34,17,35,60,39,11 OVERALL ACCURACY: 87.8 PERCENT

CALCULATED DECISION		CORREC	T DECI	SION (?	ERCENT	)
	ASI	A75B	YUI	K76B	SEB	C75B
ASIA76B YUK76B SEBC76B _TOTAL	180 ( 9 ( 10 ( 199		178 (	5.0) 89.0) 6.0)	10 (	11.0) 5.0) 34.0)

N) 2-WAY RIVER ANALYSIS: YUK76B, CENT76B VARIABLES USED: 21,34,12,36,54,60 OVERALL ACCURACY: 36.5 PERCENT

CALCULATED DECISION	CORRECT	DECISION	(PERCENT)
DEC13101	YUK76	B C	ENT76B
YUK769 CENT76B TOTAL	174 ( 37 26 ( 13 200	.0) 28 .0) 172 200	( 14.0) ( 36.0)

Appendix Table E1. Estimates of the regional stock composition of brood year 1971 chinook salmon caught as immature age 1.2's in 1975.

нтиом	10-DAY PERIOD	AREA	N	ASIA71A	WEST71A	CENT7 1A	SEBC71A
JUNE	1-10	E7046	71	40.9 ( 27.2)	2.0 ( 19.2)	53.6 ( 34.9)	3.5 ( 17.7)
JUNE	1-10	E7552	32	64.0 ( 20.7)	36.0 ( 20.7)	0	3.3 ( 11.17
JUNE	1-10	8046	26	0	15.8 ( 24.5)	63.7 ( 39.5)	20.5 ( 29.3)
JUNE	11-20	E7054	##	13.2 ( 27.9)	70.7 ( 30.9)	12.8 ( 31.0)	3.2 ( 13.1)
JUNE	11-20	_	35	72.7 ( 19.2)	27.3 ( 19.2)	0	0
JUNE	11-20	E7556	41	49.9 ( 25.5)	48.9 ( 26.2)	. 0	-
JULY		E7058	67	16.3 ( 19.2)	81.5 ( 19.5)	o o	
				7.0 ( 20.3)	87.6 ( 22.8)		2.2 ( 5.4
JULY	1-10	E7558	83			2.9 ( 20.7)	2.5 ( 7.3)
JULY	1-10	E7560	28	76.3 ( 20.8)	23.2 ( 20.8)	0	0
JULY	11-20	E6046	46	0	12.2 ( 16.6)	87.8 ( 16.6)	0
JULY	11-20	56552	26	15.5 ( 22.0)	0	83.4 ( 22.0)	0
JULY	21-31	E7048	27	0	0	100.0 ( 18.2)	0
JULY	21-31	8046	42	81.8 ( 17.8)	0	18.2 ( 17.3)	0
JULY	21-31	8048	50	61.2 ( 32.3)	16.9 ( 26.4)	19.1 ( 32.5)	2.7 ( 14.4
JUNE	ALL	E7046	76	39.2 ( 25.1)	4.3 ( 19.1)	51.2 ( 33.5)	4.8 ( 17.3
JUNE	ALL	E7054	44	13.2 ( 27.9)	70.7 ( 30.9)	12.8 ( 31.0)	3.2 ( 13.1
JUNE	ALL	E7056	44	72.1 ( 17.3)	27.9 ( 17.3)	0	0
JUNE	ALL	E7546	28	7.5 ( 34.3)	7.4 ( 30.6)	82.5 ( 56.8)	2.7 ( 30.9
JUNE	ALL	E7552	32	64.0 ( 20.7)	36.0 ( 20.7)	0	0
JUNE	ALL	E7556	42	48.1 ( 26.2)	50.7 ( 25.90	1.1 ( 5.1)	o o
JUNE	ALL	3046	34	9	24.7 ( 22.8)	52.2 ( 34.3)	23.0 ( 25.5
JULY	ALL	E6046	49	10.1 ( 16.0)	0	39.9 ( 16.0)	ັງ
JULY	ALL	26048	25	0	15.1 ( 25.9)	76.0 ( 39.5)	9.0 ( 25.7
JULY	ALL	E6050	46	19.2 ( 29.5)	3.9 ( 22.3)	57.3 ( 44.5)	9.6 ( 25.6
JULY	ALL	E5548	57	3	24.6 ( 19.2)	70.5 ( 27.1)	4.9 ( 16.3
JULY	ALL	E6552	38	õ	15.7 ( 18.4)	34.3 ( 18.4)	0
JULY	ALL	E7048	27	õ	0	100.0 ( 15.7)	Š
JULY	ALL	E7058	72	18.7 ( 23.7)	79.5 ( 24.8)	0.4 ( 20.3)	1.3 ( 6.4
JULY	ALL	£7558	90	8.9 ( 19.9)	86.2 ( 22.1)	0.8 ( 19.5)	4.1 ( 7.3
JULY	ALL	E7560	32	64.0 ( 20.7)			
			_		36.0 ( 20.7)	0	Õ
JULY	ALL	8046	42	81.8 ( 17.8)	0	18.2 ( 17.9)	0
JULY	ALL	8048	50	61.2 ( 32.3)	15.9 ( 26.4)	19.1 ( 32.5)	2.7 ( 14.4)
JULY	ALL	8056	28	13.7. ( 31.7)	86.3 ( 34.3)	0.1 ( 20.7)	o
JUNE	1-10	5	75	38.8 ( 26.3)	4.4 ( 19.2)	54.4 ( 34.0)	2.4 ( 16.9
JUNE	1-10	7	26	0	39.1 ( 23.9)	60.9 ( 23.9)	0
JUNE	1-10	8	32	64.0 ( 20.7)	36.0 ( 20.7)	0	3
JUNE	1-10	9	26	0	15.8 ( 24.5)	63.7 ( 39.5)	20.5 ( 29.3
JUNE	11-20	6	79	29.7 ( 18.0)	57.4 ( 18.9)	0	3.0 ( 5.5
JUNE	11-20	8	59	42.9 ( 22.2)	54.8 ( 22.0)	Ö	2.4 ( 5.1
JUNE	21-30	10	25	37.4 ( 23.9)	62.6 ( 23.9)	Ö	3
JULY	1-10	1	43	17.1 ( 30.2)	15.1 ( 27.0)	65.5 ( 44.9)	2.2 ( 22.9
			-	0			
JULY	1-10	3	25 79		41.9 ( 29.2)	50.3 ( 38.0)	7.3 ( 22.7
JULY	1-10	6	78	15.5 ( 22.4)	31.3 ( 23.9)	1.7 ( 20.6)	1.0 ( 5.1
	1-10		111	13.9 ( 15.4)	83.2 ( 15.7)	0	2.9 ( 4.7
JULY	11-20	3	68	0	7.5 ( 16.3)	89.5 ( 25.8)	3.0 ( 17.2
JULY	11-20	10	32	10.1 ( 19.0)	89.9 (19.0)	0	0
JULY	11-20	11	46	0	12.2 ( 16.6)	87.8 ( 16.6)	٥
JULY	21-31	1	25	0	0	95.6 ( 22.3)	4.4 ( 22.3
JULY	21-31	3	33	19.7 ( 34.2)	12.9 ( 29.3)	59.3 ( 49.8)	8.1 ( 27.6
JULY	21-31	5	27	0	0	100.0 ( 18.2)	J
JULY	21-31	7	33	14.5 ( 29.3)	12.4 ( 26.5)	73.2 ( 30.3)	Э
JULY	21-31	9	94	77.5 ( 25.9)	5.0 ( 19.1)	17.1 ( 25.0)	0.4 ( 9.3

Appendix Table El. Continued.

HTMOM	10-DAY PERIOD	AREA	N	ASIA71A	WEST71A	CENT71A	SEBC71A
JUNE	ALL	3	36	46.1 ( 36.6)	21.7 ( 30.6)	23.0 ( 39.3)	9,2 ( 21,4)
JUNE	ALL	5	89	36.2 ( 23.3)	8.3 (18.3)	49.7 ( 31.1)	5.9 . 15.3
JUNE	ALL	6	38	34.5 ( 18.2)	53.0 ( 18.2)	9	2.5 ( 5.1)
JUNE	ALL	7	43	0.9 ( 25.2)	40.9 ( 30.7)	57.1 ( 43.0)	1.2 ( 20.6.
JUNE	ALL	8	92	51.8 ( 18.4)	47.4 ( 18.1)	9	0.3 ( 4.2)
JUNE	ALL	9	42	9	32.3 ( 21.7)	50.4 ( 30.5)	17.3 ( 21.3)
JUNE	ALL	10	33	52.5 ( 21.0)	47.5 ( 21.0)	Э	0
JUNE	ALL	11	31	4.4 ( 32.3)	0.0 ( 26.6)	92.3 ( 55.5)	3.3 ( 31.6)
JULY	ALL	1	38	13.2 ( 21.5)	7.3 ( 18.1)	59.1 ( 34.5)	10.4 ( 20.1)
JULY	ALL	3	126	0	18.1 ( 13.8)	73.9 ( 20.5)	3.0 ( 13.0)
JULY		4 5 6	30	0	74.7 ( 21.3)	25.3 ( 21.3)	9
JULY	ALL	5	29	0	٥	100.3 ( 15.0)	0
JULY	ALL		92	17.2 ( 21.1)	79.4 ( 22.4)	2.9 (19.6)	0.4 ( 5.5)
JULY	ALL	7	46	15.5 ( 25.5)	5.2 ( 21.5)	78.3 : 25.6)	0
JULY	ALL	8	127 *		81.7 ( 14.9)	0	4.2 ( 5.3
JULY	ALL	9	94	77.5 ( 25.9)	5.0 ( 19.1)	17.1 ( 25.0)	0.4 ′ 9.3
JULY	ALL	10	43	4.2 24.01	94.1 ( 27.3)	1.7 ( 17.8)	3
JULY	ALL	11	49	10.1 ( 16.3)	0	89.9 ( 16.0)	٥
JUNE		MS-PAC	133	18.3 ( 18.9)	16.5 ( 16.3)	61.1 ( 28.3)	3.6 ( 14.3
JUNE		MS-3S	<b>##</b>	72.1 ( 17.3)	27.9 ( 17.3)	0	o ·
JUNE		MS-PAC	46	25.0 ( 23.7)	25.5 ( 25.5)	29.6 ( 37.4)	19.8 ( 24.0)
JUNE		MS-8S	139	36.0 ( 15.1)	51.4 ( 15.0)	•)	2.7 4.2
JUNE		MS-PAC	39	41.3 ( 34.4)	27.2 ( 30.1)	19.1 ( 36.7)	12.4 / 21.5
JUNE	21-30		30	36.4 ( 21.9)	53.6 ( 21.9)	.)	)
JULY		MS-PAC	77	3	24.7 ( 14.2)	75.3 ( 14.2)	0
JULY		MS-BS	201	18.3 ( 15.8)	79.5 ( 16.8)	0.3 : 14.4)	1.4 ( 4.2)
JULY	11-20		70	8.5 , 13.9)	3	91.4 ( 13.9)	)
JULY		MS-PAC	94	5.7 ( 21.4)	4.2 (3.7)	39.4 ( 36.5)	0.7 20.0
JULY	11-20		86	9.6 ( 20.3)	76.0 ( 23.0)	14.4 ( 23.2)	0.0 7.7
JULY	21-31	MS-PAC	212	38.3 ( 17.4)	5.0 ( 13.2)	51.1 ( 22.9)	1.1 11.3
JUNE	ALL	LBDN	54	8.9 ( 26.0)	3.6 ( 23.2)	73.3 ( 42.3)	4.2 23.6
JUNE		MS-PAC	218	24.1 ( 15.4)	20.3 ( 13.7)	47.3 21.41	3.5
JUNE	ALL	MS-8S	213	45.7 ( 13.0)	53.2 ( 12.3)	Э	1.1 1 3.0
JULY	ALL	LBDN	73	7.3 ( 13.5)	0	92.7 ( 13.6	3
JULY	ALL	MS-PAC	383	24.9 ( 14.3)	7.8 ( 11.7)	55.1 ( 21.5	2.3 **.5
JULY	ALL	MS-85	292	15.0 ( 13.6)	78.9 ( 14.9)	5.2 ( 13.5)	2.9 . 3.9

Appendix Table E2. Estimates of the regional stock composition of brood year 1972 chinook salmon caught as immature age 1.2's in 1976.

MONTH	10-DAY PERIOD	AREA	И	ASIA72A	WEST72A	CENT72A	SEBC72A
JUNE	1-10	E7046	28	1.5 ( 31.3)	22.3 ( 31.6)	62.2 ( 53.8)	13.9 ( 32.5)
JUNE	1-10	£7546	33	40.9 ( 22.5)	Ô ,	59.1 ( 22.5)	0
JUNE	11-20	E7054	25	39.2 ( 35.2)	51.3 ( 33.5)	9.5 ( 25.6)	Š
JUNE	11-20	E7056	46	23.0 ( 24.1)	68.1 ( 24.7)	3.9 ( 18.8)	ò
JUNE	11-20	E7546	32	3	0	100.0 ( 50.4)	Ó
JUNE	11-20	E7554	29	18.5 ( 29.5)	58.5 ( 30.6)	23.0 ( 27.5)	0
JUNE	21-30	E7550	30	0	28.3 ( 18.6)	71.7 ( 18.6)	٥
JUNE	21-30	8054	42	29.5 ( 30.4)	59.4 ( 31.9)	6.9 ( 28.3)	4.1.( 15.5)
JUNE	21-30	8056	25	0	92.0 ( 12.5)	0 ,	8.0 ( 12.5)
JULY	1-10	E6046	29	0	12.0 ( 16.5)	88.0 ( 16.5)	3
JULY	1-10	E6050	25	0	0	100.0 ( 20.0)	O .
JULY	1-10	E6052	7 <b>7</b>	0	12.1 ( 10.7)	87.9 ( 10.7)	<b>o</b>
JULY	1-10	£6552	66	0	14.7 ( 11.7)	85.3 ( 11.7)	3
JULY	11-20	E6046	26	4.9 ( 30.5)	13.2 ( 25.0)	82.0 ( 34.0)	Ċ
JULY	11-20	E6048	90	0	15.4 ( 10.4)	84.6 ( 10.4)	0
JULY	11-20,	E6050	29	0	0	100.0 ( 17.8)	o o
JULY	11-20	£6052	42	0	0	100.0 ( 43.0)	3
JULY	11-20	E7558	26	42.8 ( 35.2)	42.8 ( 32.4)	14.5 ( 26.9)	٥
JULY	11-20	8050	25	14.1 ( 32.9)	19.2 ( 27.5)	66.7 ( 35.1)	3
JULY	11-20	8056	43	2	72.2 ( 15.6)	27.8 ( 15.6)	o o
JULY	21-31	E6048	26	5 5 7 ( 11 5)	10.1 ( 17.0)	89.9 ( 17.0)	)
JULY	21-31 21-31	E7058 8048	28 40	58.5 ( 41.2) 12.0 ( 25.7)	36.2 ( 38.6) 24.4 ( 22.9)	4.8 ( 32.7) 63.7 ( 28.1)	0.6 ( 14.1) 3
JUNE	ALL	£6044	31	o o	22.8 ( 17.7)	77.2 ( 17.7)	э
JUNE	ALL	E7046	34	2	39.9 ( 24.0)	44.3 ( 30.2)	15.9 ( 22.3)
JUNE	ALL	E7054	28	39.0 ( 33.2)	54.1 ( 31.3)	5.9 ( 23.2)	0
JUNE	ALL	E7056	46	23.0 ( 24.1)	68.1 ( 24.7)	3.9 ( 18.8)	3
JUNE	ALL	E7546	65	13.5 ( 15.4)	0	36.5 ( 15.4)	3
JUNE	ALL	E7550	46	0	41.4 ( 15.9)	58.5 ( 15.9)	9
JUNE	ALL	E7554	36	29.3 ( 28.5)	51.0 ( 27.7)	19.5 ( 24.2)	9
JUNE	ALL	E7556	27	22.2 ( 37.4)	48.0 ( 38.3)	29.1 ( 44.5)	0.7 ( 20.6)
JUNE	ALL	8046	25	17.0 ( 39.6)	6.9 ( 29.0)	63.8 ( 56.9)	12.2 ( 33.5)
JUNE	ALL	8054	65	23.4 ( 20.6)	69.9 ( 21.1)	6.7 ( 15.5)	0
JUNE	ALL	8056	25	0	92.0 ( 12.5)	0	3.0 ( 12.5)
JULY	ALL	E6046	60	0	17.6 ( 12.6)	82.4 ( 12.6)	9
JULY	ALL	E6048	123 54	0 0	12.5 ( 3.9)	37.4 ( 3.9)	0
	ALL	E6050	-	0	0 <b>0</b>	100.0 ( 14.3)	0
JULY	ALL ALL	E6052 E6546	119 34	33.0 ( 31.9)	4.1 ( 20.3)	100.3 ( 31.0)	0
JULY	ALL	E6552	75	22.0 ( 21.8)	12.9 ( 10.9)	87.1 ( 10.9)	0
JULY	ALL	E7048	31	0	15.9 ( 21.5)	59.7 ( 33.2)	24.4 ( 27.0)
JULY	ALL	E7058	47	39.0 ( 26.2)	46.5 ( 24.5)	14.5 ( 20.2)	0
JULY	ALL	E7546	28	59.0 ( 20.2)	26.8 ( 19.1)	73.2 ( 19.1)	3
JULY	ALL	E7548	34	ŏ	30.8 ( 17.3)	69.2 ( 17.8)	Š
JULY	ALL	£7558	32	30.5 ( 30.4)	50.4 ( 29.3)	19.0 ( 25.4)	Š
JULY	ALL	8048	63	11.4 ( 20.9)	23.7 ( 18.4)	54.9 ( 22.8)	ŏ
JULY	ALL	8050	26	19.2 ( 33.5)	17.4 ( 25.8)	63.4 ( 34.5)	o o
JULY	ALL	8056	51	14.1 ( 21.8)	60.6 ( 23.3)	25.3 ( 21.4)	ő
JULY	ALL	8058	29	11.2 ( 30.7)	81.1 ( 36.1)	4.0 ( 32.1)	3.7 ( 18.3)

Appendix Table E2. Continued.

нтиом	10-DAY PERIOD	AREA	N	ASIA72A	WEST72A	CENT72A	SEBC72A
JUNE JUNE JUNE JUNE JUNE JUNE JUNE JUNE	1-10 1-10 11-20 11-20 11-20 21-30 21-30 21-30 1-10 1-10 1-10 11-20 11-20 11-20 11-20 11-20 11-20 11-20 11-20	5 7 11 6 7 8 10 1 1 3 3 1 1 1 1 3 7 8 9 10 11 15 7 8 7 8 9 10 10 11 11 15 15 16 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 17 17 17 17 17 17 17 17 17 17 17 17	28 39 30 71 59 53 53 53 53 54 54 54 54 54 54 54 54 54 54 54 54 54	1.5 ( 31.3) 34.0 ( 20.7) 0 28.7 ( 20.5) 0 27.2 ( 27.0) 0 31.6 ( 25.6) 16.4 ( 21.3) 0 0 44.0 ( 28.3) 0 0.2 ( 17.0) 0 28.2 ( 29.8) 14.3 ( 23.1) 18.7 ( 19.5) 4.9 ( 30.5) 0 58.5 ( 41.2)	22.3 ( 31.6) 0 28.3 ( 18.6) 62.1 ( 20.4) 22.5 ( 13.1) 47.8 ( 27.2) 28.3 ( 18.6) 62.3 ( 25.3) 70.7 ( 24.2) 0 15.2 ( 11.6) 44.9 ( 26.2) 12.0 ( 16.5) 5.4 ( 7.6) 0 27.0 ( 17.4) 44.3 ( 28.4) 19.2 ( 19.2) 70.3 ( 20.5) 13.2 ( 25.0) 10.1 ( 17.3) 36.2 ( 38.6) 34.2 ( 19.4)	62.2 ( 53.8) 66.0 ( 20.7) 71.7 ( 18.6) 9.1 ( 15.5) 77.5 ( 13.1) 23.5 ( 30.0) 71.7 ( 18.6) 5.6 ( 18.0) 7.3 ( 22.5) 100.0 ( 32.1) 84.8 ( 11.6) 11.0 ( 20.7) 88.0 ( 16.5) 94.6 ( 7.6) 99.8 ( 17.0) 73.0 ( 17.4) 27.6 ( 27.0) 66.5 ( 24.6) 10.5 ( 16.1) 82.0 ( 34.0) 89.9 ( 17.0) 4.8 ( 32.7) 65.8 ( 19.4)	13.9 ( 32.5) 0 0 1.4 ( 14.2) 0 5.1 ( 12.8) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra Anra	ALL ALL ALL ALL ALL ALL ALL ALL ALL ALL	7 9 5 6 7 8 9 10 11	35 74 128 104 46 950 296 133 41 47 63 796 90	14.1 ( 25.7)  1.1 ( 23.1)  29.1 ( 20.1)  3.9 ( 15.3)  23.7 ( 16.3)  18.3 ( 30.9)  10.9 ( 18.2)  0  0  39.0 ( 26.2)  0  36.9 ( 21.1)  14.2 ( 17.9)  18.1 ( 17.2)  0	34.2 ( 19.4) 22.3 ( 22.1) 31.5 ( 30.5) 52.3 ( 20.1) 12.6 ( 12.3) 59.7 ( 17.0) 3.2 ( 22.7) 75.4 ( 21.4) 31.7 ( 14.3) 6.7 ( 6.5) 22.2 ( 3.2) 15.1 ( 13.7) 46.5 ( 24.5) 30.4 ( 13.3) 44.5 ( 24.5) 30.4 ( 13.3) 44.5 ( 19.6) 68.8 ( 13.1) 17.6 ( 12.5)	57.5 (19.4) 53.6 (27.5) 53.5 (47.4) 53.5 (17.4) 15.6 (14.3) 67.9 (43.0) 11.0 (20.3) 63.3 (6.5) 77.3 (9.2) 63.3 (6.5) 77.3 (9.2) 63.3 (29.1) 14.5 (20.2) 69.6 (13.3) 16.4 (17.1) 65.2 (19.1) 13.1 (14.7) 32.4 (12.6)	3.6 ( 26.9) 3.6 ( 26.9) 5.1 ( 23.2) 7.7 ( 10.5) 0 24.6 ( 23.7) 0 0 0 0 0 0 0 0 0 0 0 0 0
Anra Tara Tara Tara Tara Tara Tara Tara T	11-20 11-20 21-30 21-30 1-10 1-10 1-10 11-20 11-20 11-20	MS-PAC MS-BS LBDN MS-PAC MS-BS LBDN MS-PAC MS-BS MS-PAC	56 73 98 173 47 118 29 178 59 32 311 113 140 44	0 9.7 ( 20.1) 0.5 ( 16.4) 20.4 ( 13.3) 5.7 ( 23.0) 16.5 ( 17.6) 0 31.3 ( 22.9) 3.9 ( 27.6) 0 24.6 ( 16.3) 0 41.9 ( 31.8)	19.9 ( 13.2) 12.7 ( 15.6) 21.1 ( 14.3) 64.5 ( 13.3) 22.1 ( 20.3) 71.0 ( 19.3) 12.0 ( 16.5) 10.7 ( 7.7) 46.3 ( 21.7) 12.6 ( 22.5) 14.3 ( 6.6) 59.9 ( 16.5) 28.0 ( 9.1) 50.3 ( 31.5)	30.1 ( 13.2) 77.7 ( 21.6) 79.4 ( 19.2) 15.3 ( 11.3) 72.2 ( 25.1) 11.1 ( 18.9) 38.0 ( 16.5) 39.3 ( 7.7) 21.9 ( 19.5) 35.5 ( 30.8) 35.2 ( 6.6) 15.5 ( 13.6) 72.0 ( 9.1) 6.2 ( 27.0)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Appendix Table E2. Continued.

MONTH	10-DAY PERIOD		N	ASIA72A	WEST72A	CENT72A	SEBC72A
MAY	ALL	LBDN	35	0	30.9 ( 22.9)	51.5 ( 30.5)	17,7 ( 23,1)
JUNE	ALL	LBDN	94	. 0	25.1 ( 10.8)	74.9 ( 10.8)	0
JUNE	ALL	MS-PAC	218	4.7 ( 13.0)	18.5 ( 10.5)	76.8 ( 14.4)	٥
JUNE	ALL	MS-BS	297	21.3 ( 10.9)	65.7 ( 11.4)	13.1 ( 9.1)	0
JULY	ALL	LBDN	66	0	20.5 ( 12.3)	79.5 ( 12.3)	0
JULY	ALL	MS-PAC	629	0	16.9 ( 5.5)	83.1 ( 5.5)	٥
JULY	ALL	MS-BS	216	29.7 ( 12.8)	55.0 ( 12.6)	15.3 ( 10.4)	Ō

Appendix Table E3. Estimates of the regional stock composition of brood year 1973 chinook salmon caught as immature age 1.2's in 1977.

MONTH	10-DAY PERIOD	AREA	N	ASIA73A	WEST73A	CENT73A	SEBC73A
JUNE	21-30	E7548	25	0	32.8 ( 20.1)	67.2 : 20.1)	o
JUNE	21-30	E7550	28	0	32.0 ( 25.0)	65.8 . 31.2)	2.3 ( 18.3)
JUNE	21-30	8050	35	30.3 ( 37.5)	13.2 26.0)	56.5 ( 30.3)	3
JUNE	21-30	8056	73	0 5 ( 22 5)	97.2 ( 9.0)	2.3 ( 9.0)	0
JULY	1-10 1-10	E7048 E <b>7</b> 050	63 79	19.5 ( 33.6) 30.1 ( 26.6)	12.2 ( 21.7) 9.6 ( 17.5)	67.7 (33.7) 60.3 (21.7)	0.6 ( 13.7)
JULY	1-10	3058	28	0	88.2 ( 12.2)	0	11.3 ( :2.2)
JULY	11-20	£7550	32	17.4 ( 35.4)	23.6 27.3)	58.9 ( 32.0)	3
JULY	11-20	8050	53	6.2 ( 28.7)	16.0 ( 19.3)	77.3 ( 25.1)	0
JULY	11-20	3054	34	2.8 ( 31.5)	81.4 ( 32.7)	7.5 ( 26.5)	3.3 ( 16.1)
JULY	11-20	8056	67	2.6 ( 24.1)	92.4 ( 23.9)	3.6 (17.3)	1,5 ( 7.4)
JULY	11-20 21-31	8058 27048	63 46	21.6 ( 20.3)	74.4 ( 21.2) 39.4 ( 15.3)	0 50.6 ( 15.3)	4.3 ( 7.5)
JULY	21-31	E7548	74	51.5 ( 28.2)	13.9 ( 20.3)	34.6 ( 20.5)	3
JULY	21-31	8056	2?	13.6 ( 29.4)	30.4 ( 30.5)	3	1.5 ( 3.9)
JUNE	ALL	27548	50	o	30.3 ( 14.3)	59.7 (14.3)	3
JUNE	ALL	E7550	52	Š	50.2 ( 14.6)	49.3 (14.6)	ō
JUNE	ALL	<b>27552</b>	28	0	96.0 ( 9.1)	3	4.0 ( 9.1)
JUNE	ALL	8050	35	30.3 ( 37.5)	13.2 ( 26.0)	56.5 (30.3)	٥
JUNE	ALL	8056	31	0	94.1 ( 9.1)	5.9 ( 9.1)	3
TOTA	ALL	26046 27048	30 115	0 10.3 ( 24.3)	4.5 ( 13.7) 25.6 ( 17.3)	95.5 ( 13.7) 63.2 ( 25.7)	0.9 ( 10.7)
LULY	ALL ALL	E7050	103	31.3 ( 24.3)	9.6 (5:7)	59.4 (7.5)	3.9 (3.7)
JULY	ALL	57548	94	46.1 25.3)	13.1 (9.2)	40.3	ž
JULY	ALL	E7550	32	17.4 36.4)	23.6 27.3)	58.3 32.01	Э
JULY	ALL	3050	53	5.2 ( 28.7)	16.0 ( 19.3)	77.3 1 25.11	0
JULY	ALL	8054	41	3.8 ( 29.3)	78.3 ( 30.3)	7.9 ( 27)	3.4 . '5.4)
JULY	ALL ALL	3056 3058	100 111	5.1 ( 21.1) 10.3 ( 14.5)	39.0 ( 20.7) 36.9 ( 15.6)	3.1 ( 15.2)	2.3 7.0) 2.3 5.7)
						63 3 1 3 <b>2</b> 1)	
JUNE	11-20	7 7	55 55	0.0 ( 25.1)	36.3 ( 21.9) 33.2 ( 13.3)	63.2 ( 25.1) 66.3 ( 3.3)	2
JUNE	21-30	á	31	12.1 ( 37.0)	79.0 ( 35.7)	3.0 25.3)	5.9 (4.6)
JUNE	21-30	9	45	24.5 ( 32.9)	13.7 ( 22.6)	51.3 (27.7)	3
JUNE	21-30	10	80	٥	98.5 ; 3.41	:.4 3.4)	3
JULY	1-10	5	143	24.9 ( 21.0)	9.9 (3.5)	55.2 (17.4)	:
JULY	1-10	10	34	2.9 ( 31.7)	39.1 32.11	2.3 ( 23.7)	5.1 ( 13.4) 9.1 ( 22.0)
JULY	11-20 11-20	5 7	30 43	28.6 ( 47.1) 12.9 ( 31.5)	10.0 ( 30.5) 21.2 ( 23.4)	52.3 45.2) 65.9 28.3)	9.1 ( 22.9)
JULY	11-20	ģ	53	6.2 ( 28.7)	16.0 ( 19.3)	77.3 ( 25.1)	Š
JULY	11-20	10	166	15.0 ( 18.3)	77.9 (17.3)	1.5 (12.5)	5.5 ( 6.5)
JULY	21-31	5	54	0	31.8 ( 13.9)	58.2 (13.9)	3
JULY	21-31	7	84	48.0 ( 32.5)	14.4 ( 22.3)	37.3 (27.2)	0.3 ( 9.1)
JULY	21-31	10	54	9.6 ( 19.4)	37.5 ( 20.3)	0	2.9 ( 7.3)
JUNE	ALL	5	26	19.2 ( 48.5)	21.0 ( 35.2)	58,5 ( 48,3)	1.3 ( 19.2)
JUNE	ALL	7	114	0	37.1 ( 10.1)	62.9 ( 10.1)	3
JUNE	ALL ALL	8 9	41 50	6.1 ( 21.3) 27.4 ( 31.5)	91.3 ( 22.6) 15.5 ( 22.2)	0 57.1 ( 26.2)	2.1 ( 3.4)
JUNE	ALL	10	99	5.4 ( 21.5)	93.9 ( 20.7)	0.1 ( 14.2)	0.7 ( 5.5)
JULY	ALL	3	36	9.1 ( 34.4)	13.5 ( 23.3)	77.4 ( 30.3)	3 5.3.
JULY	ALL	5	227	21.4 ( 20.4)	19.1 ( 13.7)	59.0 ( 20.2)	3.5 ( 3.3)
JULY	ALL	7	136	36.9 ( 21.0)	18.7 ( 15.5)	44.4 ( 16.4)	3
JULY	ALL	8	40 5.5	45.9 ( 42.2)	39.7 ( 35.0)	7.4 ( 28.5)	7.0 ( 13.9)
JULY	ALL ALL	9 10	66 254	23.7 ( 28.2) 12.4 ( 16.0)	10.4 ( 18.4) 81.1 ( 15.4)	56.0 ( 23.6) 0.5 ( 10.7)	) 6.J ( 5.5)
		, 0	- 57	10.01	0141 ( 17.9)	ツェラ こ リリェイナ	6.J ( 5.5)

Appendix Table E3. Continued.

MONTH	10-DAY PERIOD	AREA	N	ASIA73A	WEST73A	CENT73A	SEBC73A
JUNE	11-20	MS-PAC	67	3.8 ( 23.5)	37.7 ( 20.3)	58.6 ( 22.8)	0
JUNE		MS-BS	29	4.5 ( 24.1)	94.9 ( 25.6)	0	0.5 ( 8.5)
JUNE	21-30	MS-PAC	113	0	30.9 ( 10.0)	69.1 ( 10.1)	0
JUNE		MS-BS	111	2.2 ( 19.9)	94.3 ( 19.7)	2.2 ( 14.2)	1.3 ( 5.8)
JULY	1-10	MS-PAC	168	24.6 ( 19.8)	10.9 ( 12.8)	64.5 ( 16.4)	0
JULY	1-10	MS-BS	43	8.8 ( 21.3)	89.3 ( 22.7)	0	1.9 ( 8.1)
JULY	11-20	MS-PAC	141	11.2 ( 20.0)	18.5 ( 13.6)	70.3 ( 17.7)	0
JULY	11-20	MS-BS	190	17.8 ( 18.2)	73.4 ( 17.1)	3.8 ( 12.4)	5.0 ( 6.0)
JULY	21-31	MS-PAC	161	33.3 ( 23.6)	20.5 ( 16.7)	46.0 ( 21.3)	0.2 ( 7.8)
JULY	21-31	MS-B\$	69	18.3 ( 27.2)	74.2 ( 25.6)	0.3 (17.4)	7.2 ( 10.4)
JUNE	ALL	MS-PAC	191	0	35.6 ( 8.1)	54.4 ( 8.1)	0
JUNE	ALL	MS-BS	140	1.9 ( 12.5)	96.7 ( 13.5)	0	1.4 ( 4.9)
JULY	ALL	LBDN	32	0	3.5 ( 13.0)	96.5 ( 13.0)	0
JULY	ALL	MS-PAC	470	23.1 ( 14.4)	16.0 ( 9.4)	60.9 ( 11.9)	ō
JULY	ALL	MS-BS	302	16.5 ( 15.5)	75.4 ( 14.6)	2.2 ( 10.5)	5.8 ( 5.1)

Appendix Table E4. Estimates of the regional stock composition of brood year 1974 chinook salmon caught as immature age 1.2's in 1978.

HTMOM	10-DAY PERIOD	AREA	N	ASIA74A	WEST74A	CENT74A	SEBC74A
TOTA TOTA TONE TONE TONE	11-20 11-20 21-30 21-30 1-10 1-10	E7046 E7046 E7050 E7048 E7050 E7048 E7050	34 45 34 49 47 38	34.5 ( 30.0) 15.3 ( 20.6) 12.2 ( 23.6) 18.3 ( 23.4) 13.0 ( 22.6) 24.6 ( 29.9) 26.1 ( 14.4)	22.4 ( 27.3) 38.0 ( 24.8) 82.7 ( 29.5) 30.6 ( 24.6) 27.4 ( 24.4) 19.6 ( 27.1) 31.7 ( 14.5)	16.3 ( 31.5) 10.2 ( 26.3) 2.3 ( 25.6) 38.1 ( 31.5) 44.0 ( 33.3) 55.8 ( 38.1) 25.2 ( 17.2)	25.7 ( 23.9) 36.6 ( 22.5) 2.3 ( 9.6) 12.9 ( 17.4) 15.6 ( 19.2) .0 ( 14.4) 17.0 ( 10.3)
ACTA ACTA ACTA ACTA ACTA ACTA ACTA ACTA	11-20 11-20 11-20 11-20 11-20	8056 E7046 E7048 E7050 3056 9058 E7048 E7548	29 138 120 80 35 28 26 32	6.2 ( 17.2) 29.0 ( 16.4) 22.7 ( 16.5) 11.7 ( 17.3) 5.3 ( 21.4) 0 19.0 ; 29.7 30.3 ( 31.1)	87.7 ( 20.2) 22.5 ( 15.0) 25.5 ( 16.0) 29.4 ( 19.4) 68.7 ( 30.3) 94.9 ( 9.0) 34.9 ( 32.9) 31.9 ( 30.7)	0 35.3 ( 20.1) 37.9 ( 21.6) 44.1 ( 26.7) 21.4 ( 32.4) 0 20.4 ( 37.5) 25.1 ( 34.7)	5.1 ( 11.4) 12.6 ( 10.8) 13.9 ( 11.9) 14.7 ( 15.0) 4.1 ( 13.4) 5.1 ( 9.0) 25.5 ( 27.2) 12.2 ( 19.5)
ACTA ACTA ACTA ACTA ACTA ACTA ACTA ACTA	ALL ALL ALL ALL ALL ALL ALL ALL ALL ALL	E7046 E7048 E7050 E6550 E7046 E7048 E7050 E7548 8048 8056 3058	39 69 84 25 149 184 253 34 64 28	26.5 ( 17.6) 16.9 ( 20.8) 11.9 ( 16.2) 43.1 ( 37.2) 30.2 ( 16.0) 22.5 ( 14.2) 22.5 ( 11.9) 31.5 ( 29.1) 3.5 ( 21.7) 3.7 ( 15.0)	29.0 ( 17.7) 23.2 ( 20.5) 53.3 ( 20.3) 43.1 ( 37.2) 22.5 ( '4.5) 25.6 ( 13.5) 32.1 ( 12.0) 31.2 ( 23.4) 46.1 ( 27.3) 79.1 ( 22.1) 94.9 ( 9.0)	13.2 ( 19.7) 49.7 ( 29.1) 24.9 ( 22.5) 10.4 ( 32.3) 34.1 ( 19.2) 39.1 ( 18.7) 29.5 ( 15.2) 27.5 ( 32.6) 50.4 ( 31.3) 11.3 ( 22.3)	31.2 ( 15.6) 10.2 ( 15.1) 9.9 ( 11.6) 3.4 ( 13.0) 13.2 ( 10.5) 12.7 ( 10.0) 15.8 ( 3.6) 9.5 ( 16.3) 0 5.9 ( 10.1) 5.1 ( 9.0)
ATTA PATA ATTA ATTA ATTA ATTA ATTA ANDE PANE	1-10 1'-20 2'-30 1-10 1-10 1:-20 11-20 21-31 21-31 21-31	5 5 5 5 5 5 5 7 9	37 103 121 204 31 338 71 26 51 60 32	31.1 ( 28.0) 13.0 ( 14.5) 16.5 ( 15.3) 25.6 ( 13.5) 0 22.7 ( 11.5) 6.8 ( 15.3) 23.3 ( 32.2) 31.5 ( 24.2) 29.8 ( 22.3) 34.8 ( 32.3)	30.7 ( 27.7) 49.8 ( 19.1) 33.8 ( 16.5) 28.9 ( 13.1) 95.7 ( 8.2) 25.2 (10.9) 33.1 ( 21.3) 33.2 ( 23.5) 36.8 ( 24.7) 42.4 ( 23.5) 34.9 ( 31.7)	13.5 ( 29.3) 19.6 ( 19.6) 35.8 ( 21.2) 32.7 ( 16.3) 0 38.5 . 15.5) 5.1 . 19.3) 28.1 ( 39.4) 11.7 ( 24.4) 13.3 ( 23.3) 25.3 ( 34.6)	24.7 ( 22.1) 17.6 ( 12.3) 13.9 ( 11.8) 12.9 ( 9.1) 4.3 ( 3.2) 13.5 ( 8.2) 15.4 ( 23.6) 20.0 ( 17.4) 14.5 ( 14.4) 4.5 ( 14.6)
TALL TALL TALL TALL TALL TALL TALL TALL	ALL ALL ALL ALL ALL	5 3 5 7 9	261 50 593 71 68 103	17.2 ( 10.8) 17.5 ( 22.9) 24.5 ( 9.7) 31.6 ( 21.1) 20.0 ( 20.8) 4.6 ( 12.4)	39.5 ( 12.0) 42.8 ( 25.3) 27.5 ( 9.1) 40.7 ( 21.8) 42.9 ( 22.7) 32.8 ( 17.9)	26.3 ( 14.6) 34.1 ( 30.2) 34.2 ( 12.3) 15.9 ( 21.9) 36.0 ( 26.7) 6.8 ( 17.3)	16.9 ( 8.4) 5.7 ( 13.5) 13.9 ( 6.6) 11.7 ( 12.4) 1.1 ( 9.7) 5.8 ( 7.7)
MAY BAUUL BAUUL BAUUL YUUL YUUL YUUL YUUL YUUL YUUL	11-20 11-20 21-30 21-30 1-10 1-10 11-20 11-20	MS-PAC LBDN MS-PAC MS-PAC MS-BS MS-PAC MS-BS MS-PAC	32 38 25 103 123 27 239 32 375 79	9.5 ( 27.0) 29.6 ( 27.6) 21.1 ( 35.2) 13.0 ( 14.5) 17.2 ( 15.4) 7.1 ( 18.4) 24.4 ( 12.6) 21.4 ( 11.2) 6.8 ( 14.7) 30.3 ( 14.2)	20.6 ( 28.1) 29.5 ( 27.2) 17.0 ( 31.3) 49.3 ( 18.1) 32.9 ( 16.4) 90.4 ( 20.2) 33.3 ( 12.6) 90.5 ( 22.7) 26.7 ( 10.7) 81.9 ( 20.2) 37.9 ( 14.5)	57.4 ( 41.3) 17.3 ( 30.1) 58.3 ( 46.3) 19.6 ( 19.6) 36.4 ( 21.2) 0 31.9 ( 15.3) 3.9 ( 22.9) 40.0 ( 15.4) 3.1 ( 19.5) 17.4 ( 15.4)	12.5 [ 23.0) 23.5 : 21.7) 3.0 ( 20.0) 17.6 ( 12.3) 13.5 : 11.6) 2.5 ( 3.9) 10.5 ( 3.1) 5.6 : 11.9 11.9 ( 7.9) 3.2 ( 7.3) 14.4 ( 9.0)

Appendix Table E4. Continued.

	10-DAY PERIOD		N	asia74a	WEST74A	CENT74A	SEBC74
	-				•		
MAY	ALL	LBDN	44	12.6 ( 25.1)	19.7 ( 24.7)	60.9 ( 36.8)	5.9 ( 18.1)
JUNE	ALL	LBDN	46	0	39.9 ( 20.0)	60.1 ( 20.0)	0
JUNE	ALL	MS-PAC	264	17.3 ( 10.9)	39.0 ( 12.0)	27.1 ( 14.7)	16.5 ( 8.4)
JUNE	ALL	MS-BS	39	0	99.9 ( 5.0)	0	0.1 ( 5.0)
JULY	ALL	MS-PAC	783	24.2 ( 3.9)	31.1 ( 8.6)	32.6 ( 11.3)	12.0 ( 5.9)
JULY	ALL	MS-BS	116	5.2 ( 12.1)	30.1 ( 17.3)	10.0 ( 17.2)	4.7 ( 7.0)

Appendix Table E5. Estimates of the regional stock composition of brood year 1975 chinook salmon caught as immature age 1.2's in 1979.

HTHOM	10-DAY PERIOD		Ŋ	ASIA75A	WEST75A	CENT75A	SEBC75A
AUTA  AUTA	1-10 21-30 1-10 1-10 11-20 11-20 21-31 21-31	27050 27050 27558 27050 27556 3056 3050 8056	25 79 55 26 84 96 30 56 28	21.8 ( 31.7) 14.9 ( 15.3) 45.9 ( 28.2) 0 26.5 ( 19.6) 4.3 ( 11.6) 0 22.7 ( 23.3) 0	21.5 ( 27.3) 54.9 ( 17.7) 33.2 ( 22.0) 34.0 ( 13.5) 16.0 ( 15.5) 53.4 ( 16.4) 71.5 ( 12.2) 46.1 ( 23.1) 72.0 ( 19.7) 90.3 ( 14.1)	56.6 ( 39.4) 30.2 ( 20.9) 17.9 ( 33.5) 16.0 ( 18.5) 57.5 ( 23.7) 32.3 ( 19.3) 28.5 ( 12.2) 28.0 ( 19.7) 9.2 ( 14.1)	0 3.0 ( 12.0) 0 0 0 3.2 ( 13.5)
ACTA TATA ACTA TATA ACTA ACTA ACTA ACTA	ACC ALC ALC ALC ALC ALC ALC ALC ALC	27050 27544 27048 27050 27556 27558 3050 3056 3058	93 32 38 139 118 35 62 125	14.8 ( 14.1) 24.4 ( 28.3) 50.3 ( 36.4) 32.6 ( 19.3) 0 0 21.4 ( 22.2) 0.4 ( 3.4)	57.6 : 16.4) 25.3 ( 25.3) 10.5 : 20.91 17.7 ( 13.5) 64.0 ( 10.6) 83.1 : 15.4) 44.7 ( 22.0) 78.0 ( 14.1) 85.5 ( 13.5)	27.6 ( 19.1) 49.3 ( 34.6) 26.5 ( 43.9) 49.5 ( 27.0) 36.0 ( 10.6) 11.9 ( 15.4) 32.3 ( 32.0) 21.6 ( 16.2) 14.5 ( 13.5)	0 2.1 ( 14.6) 5.7 ( 11.3) 0 0 1.5 ( 12.7)
ANTA ANTA ANTA ANTA ANTA ANTA ANNE ANNE	1-10 11-20 21-30 1-10 1-10 11-20 11-20 11-20 21-31 21-31	5 5 5 B O 0 5 B O	25 29 39 77 48 33 116 84 70	21.8 ( 31.7) 9.3 (23.2) 20.3 (15.7) 45.5 ( 24.5) 12.0 ( 19.5) 28.7 ( 17.4) 4.3 ( 11.6) 0 26.9 ( 22.1)	21.6 27.3) 49.5 28.6) 6.3 16.7 29.3 18.4) 64.2 13.9) 79.9 24.7 17.8 13.7 63.4 16.4) 74.2 20.7 83.0 12.1)	56.6 (39.4) 41.2 (34.5) 27.4 (19.7) 21.3 (29.7) 15.6 (39.9) 8.1 (25.8) 53.5 (20.7) 32.3 (9.3) 28.3 (9.3) 27.4 (29.9) 17.2 (20.7)	3.9 · · · · · · · · · · · · · · · · · · ·
TATA TATA TATA TATA TAME	ALL ALL ALL ALL ALL ALL	5 3 5 9 10	132 32 25 197 153 78 184	18.5 ( 13.0) 24.4 ( 28.3) 25.9 ( 24.3) 39.3 ( 17.5) 0 28.6 ( 21.6) 0.3 ( 7.1)	51.4 ( 14.1) 26.3 ( 25.3) 0 17.1 ( 11.3) 69.5 ( 9.3) 41.9 ( 19.6) 81.4 ( 12.1)	30. 1 16.91 49.3 34.5. 74.1 24.31 40.9 (23.7. 30.5 (9.3) 28.9 (29.0) 17.9 (13.7)	0 0 0 0.5 ( 3.9) 0.5 ( 10.5)
TOTA TOTA TOTA TOTA TOTA TOTA TOTA TOTA	1-10 11-20 21-30 1-10 1-10 11-20 11-20 21-31	LBDN MS-PAC MS-PAC MS-PAC MS-BS MS-PAC MS-BS MS-PAC MS-BS MS-PAC MS-BS	33 25 36 90 110 81 129 200 83 78	26.5 ( 29.2) 34.6 ( 36.6) 12.5 ( 22.9) 20.5 ( 15.5) 40.5 ( 21.5) 2.5 ( 10.0) 31.6 ( 17.0) 6.3 ( 3.3) 27.9 ( 18.5)	16.5 ( 23.4) 53.6 ( 34.1) 40.3 ( 25.5) 52.6 ( 16.6) 20.3 ( 14.9) 33.8 ( 16.3) 16.6 ( 13.0) 56.6 ( 12.0) 31.8 ( 16.6) 85.7 ( 11.1)	57.0 ( 35.0) 10.0 ( 42.7) 47.1 ( 32.0) 26.3 ( 19.5) 37.6 ( 28.1) 13.7 ( 18.2) 51.9 ( 19.9) 26.6 ( 14.0) 40.3 ( 22.1) 14.3 ( 11.1)	0 1.3 ( 15.0) 0 0 1.5 ( 10.5) 0 0 0
MAY JUNE JUNE JULY JULY	ALL ALL ALL ALL	LBDN LBDN MS-PAC MS-PAC MS-BS	30 41 151 322 359	12.9 ( 20.8) 27.3 ( 25.9) 17.4 ( 12.4) 31.3 ( 12.3) 3.7 ( 5.5)	23.7 ( 22.1) 49.1 ( 13.4) 21.7 ( 9.7) 75.4 ( 9.8)	87.1 ( 20.8) 49.3 ( 31.1) 33.4 ( 16.4) 46.5 ( 14.5) 20.9 ( 11.3)	0 0 0 0

Appendix Table E6. Estimates of the regional stock composition of brood year 1976 chinook salmon caught as immature age 1.2's in 1980.

MONTH	10-DAY PERIOD	AREA	н	ASIA76A	WEST76A	CENT76A	SEBC76A
JUNE JUNE	21 <b>-</b> 30 21 <b>-</b> 30	E7048 E7050	98 53	15.6 ( 13.7) 14.9 ( 19.0)	16.3 ( 17.2) 27.3 ( 27.0)	39.5 ( 33.6) 56.6 ( 45.5)	28.5 ( 22.1) 1.2 ( 22.5.
JULY	1-10	E7048	32	46.9 ( 24.5)	0	19.6 ( 31.7)	33.5 ( 27.5)
JULY	1-10 1-10	E7050 E7054	25 56	0 11.4 ( 12.1)	45.9 ( 25.2) 81.5 ( 15.5)	54.1 ( 25.2) 0	0 7.0 ( 11.0)
JULY	1-10	E7556	130	10.1 ( 3.9)	38.4 ( 15.3)	1.5 ( 14.1)	3
JULY	1-10	8056	51	3.1 ( 9.4)	91.9 ( 9.4)	0	Ö
JULY	11-20	E7048	11.11	18.6 ( 22.5)	0.7 ( 22.9)	68.9 ( 51.9)	11.8 ( 30.9)
JULY	11-20	E7050	117	10.3 ( 10.9)	14.7 ( 15.2)	75.0 ( 18.5)	0
JULY	11-20	57052	41	0	42.1 ( 24.8)	39.4 ( 34.8)	18.5 ( 24.2)
JULY	11-20	E7556	91 25	11.1 ( 10.5) 22.6 ( 24.5)	37.9 ( 17.5) 22.5 ( 30.2)	1.1 ( 15.8)	0
JULY	11-20 11-20	8048 8054	25 28	22.5 ( 24.5)	100.0 ( 3.3)	54.9 : 36.0) 0	0
MIL	11-20	8056	88	õ	98.5 ( 11.8)	1.5 ( 11.8)	ŏ
JULY	21-31	E7048	224	7.9 ( 9.4)	7.5 ( 12.8)	63.4 ( 27.0)	21.3 ( 15.9)
JULY	21-31	E7050	271	18.5 ( 9.5)	20.2 ( 12.3)	49.5 ( 22.8)	11.7 ( 12.9)
JULY	21-31	£7558	29	4.3 ( 10.9)	95.7 ( 10.9)	o	อ
JUNE	ALL	E7048	115	13.9 ( 12.5)	15.7 ( 15.4)	45.3 ( 32.0)	25.1 ( 20.5)
JUNE JULY	ALL ALL	E7050	73	10.1 ( 14.3)	50.0 ( 24.6)	36.9 ( 36.9)	3.0 ( 17.5) 18.7 ( 15.3)
JULY	ALL	E7048 E7050	300 413	9.9 ( 3.9) 15.2 ( 3.4)	4.9 ( 11.7) 14.4 ( 11.3)	56.5 ( 24.9) 63.7 ( 22.0)	6.7 ( 12.4)
JULY	ALL	E7052	41	0	42.1 ( 24.8)	39.4 ( 34.3)	:8.5 ( 24.2)
JULY	ALL	E7054	75	12.7 ( 13.3)	32.7 ( 23.6)	1.7 ( 30.5)	2.9 ( 11.9)
JULY	ALL	E7556	223	10.4 ( 7.3)	38.5 ( 12.9)	1.1 ( 25.1)	0
JULY	ALL	€7558	29	4.3 ( 10.9)	95.7 ( 10.9)	0	<b>o</b>
JULY	ALL	8048	25	22.5 ( 24.5)	22.5 ( 30.2)	54.9 ( 36.0)	0
JULY	ALL	8054 8056	28 139	0 12.9 ( 5.7)	100.0 ( 3.3) 37.1 ( 5.7)	0	0 0
JULY	ALL		•				O
JUNE	1-10	5	27	18.1 ( 24.8)	36.6 ( 34.7)	13.0 ( 53.9)	32.3 ( 37.5)
JUNE	11-20	5	32	0	81.9 ( 20.4)	18.! ( 20.4)	0
JUNE JULY	21 <b>-3</b> 0 1 <b>-</b> 10	5 5	155 57	14.9 ( 11.1) 37.3 ( 18.1)	23.1 ( 15.3)	43.3 ( 27.6) 35.2 ( 25.9)	18.7 ( 16.7) 27.5 ( 21.1)
JULY	1-10	6	56	11.4 ( 12.1)	81.5 ( 15.5)	37.2 ( 27.7)	7.0 ( 11.0)
JULY	1-10	8	130	10.1 ( 8.9)	38.4 ( 15.3)	1.5 ( 14.1)	0
JULY	1-10	10	57	12.9 ( 6.7)	87.1 ( 5.7)	0	Ō
JULY	11-20	5	208	9.3 ( 10.6)	6.7 ( 14.4)	77.5 ( 29.2)	6.4 ( 16.3)
JULY	11-20		30	11.9 ( 20.7)	72.2 ( 36.4)	11.4 ( 48.9)	4.5 ( 21.8)
JULY	11-20	8	105	12.9 ( 6.7)	37.1 ( 6.7)	0	0
JOFA JOFA	11-20	9	<b>38</b> 116	14.3 ( 18.1)	30.7 ( 26.3)	55.0 ( 29.9) 0	0
JULY	11-20 21-31	10 3	25	10.1 ( 6.9) 13.2 ( 21.8)	89.9 ( 6.9) 33.3 ( 32.6)	53.6 ( 36.6)	0
JULY	21-31	5	495	13.8 ( 7.4)	14.5 ( 10.1)	55.8 ( 20.0)	16.0 ( 11.9)
JULY	21+31	8	31	3.5 ( 10.3)	96.5 ( 10.3)	0	0
JUNE	ALL	5	214	12.6 ( 9.1)	30.1 ( 13.9)	38.7 ( 23.8)	13.6 ( 14.2)
JULY	ALL	3	46	0	45.7 ( 18.3)	54.3 ( 18.8)	0
JULY	ALL	5	760	11.9 ( 5.9)	11.1 ( 9.6)	64.5 ( 19.5)	12.5 ( 11.4)
JULY	ALL	6	93	9.8 ( 9.3)	83.1 ( 12.2)	0	7.1 ( 3.8)
JULY	ALL ALL	8 9	266 56	10.3 ( 6.9) 12.9 ( 14.7)	89.4 ( 12.3) 35.6 ( 22.3)	0.3 ( 11.4) 51.5 ( 24.9)	0 0
JULY	ALL	10	185	9.1 ( 5.6)	90.9 ( 5.6)	0	õ

Appendix Table E6. Continued.

MONTH	10-DAY PERIOD	AREA	N	ASIA76A	WEST76A	CENT76A	SEBC76A
JUNE		MS-PAC	29	16.8 ( 23.2)	43.4 ( 34.4)	9.4 (50.3)	30.5 . 35.1)
JUNE	11-20	MS-PAC	33	0	33.1 ( 20.0)	16.9 ( 20.0)	3
JUNE	21-30	LBDN	38	3.2 ( 15.3)	15.6 ( 25.5)	91.2 ( 30.2)	Э
JUNE	21-30	MS-PAC	167	13.8 ( 10.7)	23.1 ( 15.1)	46.5 ( 27.2)	15.5 ( 15.2)
JULY	1-10	MS-PAC	98	7.7 ( 13.5)	14.4 ( 19.3)	73.4 ( 37.3)	4,5 ( 20.8)
JULY	1-10	MS-BS	243	14.9 ( 5.5)	85.1 ( 5.5)	3	2
JULY		MS-PAC	269	10.0 ( 9.3)	8.0 (13.4)	~5.+ ( 25.9)	5.5 ( 15.4)
JULY		MS-BS	251	8.1 ( 7.2)	90.0 ( 15.7)	1,5 (21,1)	0.4 ( 7.1)
JULY		MS-PAC	533	12.6 ( 7.3)	14.8 ( 10.2)	59.1 ( 20.1)	13.5 ( 11.7)
JULY	-	MS-BS	50	8.2 ( 14.4)	83.7 (28.3)	6.5 (37.8)	1.7 ( 14.5)
JUNE	ALL	LEDN	52	1.6 ( 12.9)	22.4 ( 23.0)	75.0 26.5)	2
JUNE	ALL	MS-PAC	229	11.7 ( 3.3)	31.1 ( 13.7)	40.2 23.3)	15.9 13.73
JULY	ALL	MS-PAC	900	11.3 ( 6.7)	12.7 9.5)	65.3 (9.1)	10.2 . 11.0
JULY	ALL	MS-BS	544	13.3 ( 4.2)	36.7 (4.2)	)	3

Appendix Table E7. Estimates of the regional stock composition of brood year 1977 chinook salmon caught as immature age 1.2's in 1981.

	10-DAY PERIOD	AREA	N	ASIA77	WEST77	CENT77	SEBC77
JUNE	11-20	E7048	28	46.1 ( 28.9)	42.3 ( 35.7)	11.2 ( 30.0)	0.4 ( 11.3)
JUNE	11-20	E7050	79	24.8 ( 15.4)	71.2 ( 23.5)	2.2 ( 18.9)	1.8 ( 3.4)
JUNE	21-30	E7048	42	48.3 ( 20.0)	0	48.3 ( 22.2)	3.4 ( 10.5)
JUNE	21-30	E7050	200	35.9 ( 10.8)	33.5 ( 13.9)	28.8 ( 14.2)	1.8 ( 5.9)
JUNE	21-30	£7544	39	57.2 ( 24.5)	16.2 ( 24.1)	11.1 ( 23.2)	15.5 ( 17.8)
JUNE	21-30	E7546	57	36.0 (12.8)	0	64.0 ( 12.8)	0
JULY	1-10	E7048	92	53.9 ( 15.4)	7.5 ( 14.4)	28.6 ( 18.5)	10.0 ( 10.8)
JULY	1-10	E7050	145	45.5 ( 13.0)	25.6 ( 14.8)	21.8 ( 14.9)	7.2 ( 7.9)
JULY	1-10	E7556	48	6.3 ( 11.6)	75.6 ( 24.7)	18.1 ( 24.0)	0 , ,,,
JULY	11-20	E7046	43	56.5 ( 23.6)	20.0 ( 24.5)	15.7 ( 23.9)	7.7 ( 13.8)
JULY	11-20	E7048	141	60.6 ( 13.6)	9.1 ( 12.5)	24.7 ( 14.7)	5.5 ( 7.3)
JULY	11-20	£7050	424	28.1 ( 7.3)	34.7 ( 10.3)	29,6 ( 10.7)	7.6 ( 5.5)
JULY	11-20	E7052	33	3.3 (13.2)	51.6 ( 29.8)	44.6 ( 30.6)	0
JULY	11-20	E7556	71	13.5 ( 11.7)	56.7 ( 20.6)	29.8 ( 20.3)	ŏ
JULY	11-20	8056	65	20.8 (13.6)	50.0 ( 20.9)	29.2 ( 20.6)	õ
JULY	21~31.	E7048	327	20.8 ( 7.8)	24.8 ( 11.2)	53.6 ( 13.5)	0.3 ( 6.0)
JULY	21-31	27050	255	32.3 ( 9.4)	29.5 ( 12.1)	32.1 ( 13.0)	5.1 ( 6.5)
JULY	21-31	E7556	27	6.2 ( 15.8)	50.4 ( 32.6)	43.4 ( 33.5)	0
JULY	21-31	8055	37	11.9 ( 15.9)	36.4 ( 26.7)	51.7 ( 28.4)	ō
JUNE	ALL	E7048	79	43.3 ( 17.3)	15.6 ( 18.0)	37.5 ( 21.5)	3.5 ( 9.8)
JUNE	ALL	E7050	279	32.3 ( 9.2)	44.2 ( 12.9)	21.3 ( 12.3)	1.8 ( 5.1)
JUNE	ALL	E7544	39	57.2 ( 24.5)	15.2 ( 24.1)	11.1 ( 23.2)	15.5 ( 17.3)
JUNE	ALL	E7546	57	36.0 ( 12.3)	0	64.0 ( 12.3)	c
JULY	ALL	E7046	52	53.2 ( 21.3)	23.9 ( 23.0)	9.9 ( 20.4)	13.0 ( 14.6)
JULY	ALL	E7048	560	36.3 ( 7.1)	18.0 ( 8.4)	42.2 ( 10.2)	3.5 ( 4.3)
JULY	ALL	E7050	824	32.4 ( 5.8)	31.5 ( 3.1)	29.0 ( 3.5)	7.1 ( 4.2)
JULY	ALL	E7052	37	5.3 ( 13.5)	48.4 ( 27.9)	45.8 ( 28.9)	3
JULY	ALL	E7556	146	9.8 ( 7.8)	51.7 ( 15.2)	28.5 ( 15.1)	0
JULY	ALL	3046	25	65.2 ( 25.2)	31.9 ( 28.5)	2.9 ( 21.5)	2
JULY	ALL	3056	111	18.8 ( 10.4)	42.9 ( 15.2)	38.3 ( 16.6)	0
JUNE	11-20	5	107	30.4 ( 14.0)	63.7 ( 20.5)	4.5 ( 16.6)	1.4 ( 7.0)
JUNE	21-30	5	242	35.6 ( 9.9)	27.1 ( 12.3)	34.6 ( 13.4)	2.7 . 5.9)
JUNE	21-30	7	59	36.4 ( 12.6)	. 0	63.6 ( 12.6)	Э
JUNE	21-30	14	39	57.2 ( 24.5)	16.2 ( 24.1)	11.1 ( 23.2)	15.5 ( 17.8)
JULY	1-10	5	250	47.9 ( 10.3)	20.8 ( 11.1)	22.1 ( 11.6)	9.2 ( 6.5)
JULY	1-10	8	48	6.3 (11.6)	75.6 ( 24.7)	18.1 ( 24.0)	0
JULY	11-20	5	641	35.9 ( 6.6)	29.4 ( 8.6)	28.1 ( 9.0)	5.6 ( 4.5)
JULY	11-20	8	71	13.5 ( 11.7)	56.7 ( 20.6)	29.8 ( 20.3)	Э
JULY	11-20	9	55	51.6 ( 17.6)	23.3 ( 18.8)	25.2 ( 19.6)	0
JULY	11-20	10	76	18.3 ( 12.3)	50.3 ( 19.6)	31.4 ( 19.4)	٥
JULY	21-31	5	582	25.3 ( 6.4)	26.9 ( 9.0)	44.2 ( 10.5)	3.1 ( 4.9)
JULY	21-31	8	42	7.3 ( 13.2)	44.2 ( 25.0)	48.9 ( 27.1)	0
JULY	21-31	10	37	11.9 ( 15.9)	36.4 ( 26.7)	51.7 ( 28.4)	э
JUNE	ALL	5	371	34.9 ( 8.2)	35.0 ( 11.0)	27.0 ( 11.1)	2.1 ( 4.7)
JUNE	ALL	7	59	36.4 ( 12.6)	0	63.6 ( 12.6)	0
JUNE	ALL	14	39	57.2 ( 24.5)	16.2 ( 24.1)	11.1 ( 23.2)	15.5 ( 17.8)
JULY	ALL	5	1473	34.0 ( 4.9)	26.9 ( 6.8)	33.4 ( 7.5)	5.7 ( 3.6)
JULY JULY	ALL	8	161	9.6 ( 7.5)	59.1 ( 14.6)	31.3 ( 14.6)	o o
. HIII V	ALL	9	57	53.7 ( 17.4)	22.2 ( 18.2)	24.1 ( 19.0)	0

Appendix Table E7. Continued.

MONTH	10-DAY PERIOD	AREA	N	ASIA77	WEST77	CENT77	SEBC77
JUNE	11-20	MS-PAC	107	30.4 ( 14.0)	63.7 ( 20.5)	4.5 ( 16.6)	1.4 ( 7.3)
JUNE	21-30	LBDN	53	52.1 ( 21.1)	11.2 ( 19.5)	22.6 ( 23.0)	14.2 15.47
JUNE	21-30	MS-PAC	305	38.9 ( 3.2)	21.0 ( 10.7)	38.4 ( 12.3)	1.5 ( 5.3)
JULY	1-10	MS-PAC	269	48.6 ( 10.3)	19.5 ( 10.7)	23.2 ( 11.3)	3.7 6.3)
JULY		MS-8S	75	9.5 ( 10.4)	66.9 ( 20.3)	23.5 ( 19.8)	3
JULY	11-20	MS-PAC	698	37.0 ( 5.4)	28.8 ( 3.3)	28.5 ( 3.7)	5.3 ( 4.2)
JULY	11-20	MS-3S	147	15.0 ( 3.7)	53.4 ( 14.8)	30.6 ( 14.7)	3
JULY	21-31	MS-PAC	594	25.3 ( 5.4)	26.4 ( 3.9)	43.6 ( 10.4)	3.8 ( 4.9)
JULY	_	MS-BS	79	9.3 ( 10.5)	40.5 ( 19.1)	50.2 ( 20.1)	3
MAY	ALL	LBDN	40	46.6 ( 20.5)	24.3 ( 22.4)	28.6 ( 23.6)	0
JUNE	ALL	LBDN	53	52.1 ( 21.1)	11.2 ( 19.5)	22.6 ( 23.3)	*4.2 ( 15.4)
JUNE	ALL	MS-PAC	435	37.2 ( 7.3)	30.7 ( 10.0)	30.6 . 10.5)	1.5 ( 4.4)
JULY	ALL	MS-PAC	1561	34.9 ( 4.9)	26.2 ( 6.7)	33.3 (7.3)	5.5 ( 3.5)
JULY	ALL	MS-BS	301	12.6 ( 5.1)	53.4 ( 11.3)	34.0 11.4)	5

Appendix Table Fl. Estimates of the regional stock composition of brood year 1970 chinook salmon caught as immature age 1.3's in 1975.

MONTH	10-DAY PERIOD	AREA	И	ASIA70	WEST70	CENT70	SEBC70
JUNE	ALL	MS-BS	27	16.1 ( 26.1)	71.0 ( 34.1)	12:9 ( 23.3)	3

Appendix Table F2. Estimates of the regional stock composition of brood year 1971 chinook salmon caught as immature age 1.3's in 1976.

	10-DAY PERIOD		И	ASIA71B	WEST71B	CENT713	SEBC713
JUNE	ALL	MS-PAC	36	69.6 ( 25.5)	1.5 ( 19.0)	0	23.9 ( 21.3)
JUNE	ALL	MS-BS	38	74.3 ( 17.9)	25.7 ( 17.9)	0	o o
JULY	ALL	MS-PAC	28	86.6 ( 14.5)	0	)	13.4 ( 14.5)

Appendix Table F3. Estimates of the regional stock composition of brood year 1972 chinook salmon caught as immature age 1.3's in 1977.

MONTH	10-DAY PERIOD	AREA	N	ASIA72B	WEST72B	CENT72B	SEBC72B
JUNE	ALL	E6044	25	0	0	100.0 ( 57.9)	0
JUNE	ALL	E7550	27	60.1 ( 36.6)	28.0 ( 31.0)	11.9 ( 26.7)	Ō
JULY	ALL	8058	32	42.4 ( 36.8)	45.3 ( 36.2)	4.8 ( 38.4)	7.5 ( 23.0)
JUNE	11-20	7	34	27.5 ( 29.8)	47.6 ( 28.1)	25.0 ( 26.9)	0
JULY	11-20	10	32	21.8 ( 32.1)	66.7 ( 35.7)	5.2 ( 38.6)	6.2 ( 23.2)
JUNE	ALL	5 7	25	55.2 ( 39.9)	4.6 ( 24.9)	40.3 ( 34.1)	0
JUNE	ALL	7	54	34.0 ( 24.8)	42.0 ( 22.4)	24.0 ( 21.4)	0
JUNE	ALL	8	32	37.6 ( 31.5)	50.0 ( 29.7)	12.4 ( 24.6)	0
JUNE	ALL	10	27	18.7 ( 20.6)	81.3 ( 20.6)	0	0
JUNE	ALL	11	34	0	0.5 ( 12.6)	99.5 ( 12.6)	0
JULY	ALL	10	49	29.3 ( 27.9)	57.9 ( 29.5)	4.1 ( 31.3)	8.1 ( 19.4)
JUNE	1-10	LBDN	30	0	6.9 ( 15.1)	93.1 ( 15.1)	0
JUNE	1-10	MS-PAC	25	40.0 ( 39.3)	6.7 ( 24.4)	53.3 ( 35.3)	0
JUNE	11-20	MS-PAC	47	24.9 ( 25.0)	51.7 ( 24.1)	23.4 ( 22.8)	0
JUNE	21-30	MS-PAC	29	71.9 ( 35.6)	18.4 ( 28.9)	9.8 ( 25.2)	0
JUNE	21-30	MS-BS	46	25.2 ( 16.7)	74.8 ( 16.7)	0	0
JULY	11-20	MS-BS	35	22.6 ( 31.5)	63.5 ( 34.3)	10.0 ( 38.9)	4.0 ( 21.9)
JUNE	ALL	LBDN	48	٥	4,2 ( 11.7)	95.8 ( 11.7)	0
JUNE	ALL	MS-PAC	101	42.1 ( 19.4)	31.3 ( 16.2)	26.9 ( 16.4)	0
JUNE	ALL	MS-BS	59	27.7 ( 15.1)	72.3 ( 15.1)	0	0
JULY	ALL	MS-PAC	25	5.3 ( 32.3)	28.2 ( 28.3)	66.4 ( 35.7)	0
JULY	ALL	MS-BS	59	38.2 ( 27.2)	48.7 ( 27.2)	7.9 ( 29.7)	5.2 ( 16.8)

Appendix Table F4. Estimates of the regional stock composition of brood year 1973 chinook salmon caught as immature age 1.3's in 1978.

	YAD-01 PERIOD	AREA	N	ASIA73B	WEST73B	CENT73B	SEBC73B
JUNE	ALL	E7046	25	0	12.8 ( 17.1)	87.2 ( 17.1)	0
JUNE	11-20	5	29	12.8 ( 44.0)	37.6 ( 32.0)	49.5 ( 37.1)	2
JUNE	21-30	5	31	56.1 ( 24.7)	43.9 ( 24.7)	3	э
JUNE	ALL	5	78	26.7 ( 29.4)	33.4 ( 20.6)	39.9 ( 23.0)	2
JULY	ALL	5	36	_. 0	38.1 ( 21.9)	40.3 ( 25.7)	21.7 ( 19.5)
JUNE	11-20	MS-PAC	29	12.8 ( 44.0)	37.6 ( 32.0)	49.6 ( 37.1)	o
JUNE	21-30	MS-PAC	32	58.7 ( 24.3)	41.3 ( 24.3)	o	o
JUNE	ALL	MS-PAC	90	24.9 ( 28.9)	34.2 ( 20.4)	40.9 ( 22.7)	э
JULY	ALL	MS-PAC	53	Э	50.2 ( 18.8)	36.4 . 20.91	*3.5 ( *3.9

Appendix Table F5. Estimates of the regional stock composition of brood year 1974 chinook salmon caught as immature age 1.3's in 1979.

MONTH	10-DAY PERIOD	AREA	N	ASIA74B	WEST748	CENT74B	SEBC74B
JUNE	ALL	E7050	28	55.2 ( 31.7)	35.8 ( 31.0)	9.0 ( 22.4)	o
JUNE	ALL	5	39	46.6 ( 25.7)	38.9 ( 26.5)	14.4 ( 21.0)	9
JUNE		MS-PAC MS-PAC	3 n n n	43.0 ( 24.9) 50.2 ( 33.7)	42.3 ( 25.1) 19.7 ( 30.3)	14.6 ( 19.9) 24.6 ( 43.0)	3 5.5 ( 32.4)

Appendix Table F6. Estimates of the regional stock composition of brood year 1975 chinook salmon caught as immature age 1.3's in 1980.

HONTH	10-DAY PERIOD	AREA	N	ASIA75B	WEST75B	CENT75B	SEBC75B
JUNE	ALL	E7950	39	5.7 ( 22.1)	57.4 ( 29.1)	35.3 ( 46.1)	1.7 ( 22.4)
JUNE	21-30	5	28	o	61.3 ( 20.8)	38.2 ( 20.3)	b
JULY JUNE	ALL ALL ALL	5 5 9	64 26 28	14.4 ( 18.1) 23.1 ( 36.4) 10.5 ( 16.3)	50.4 ( 19.5) 27.4 ( 32.1) 36.9 ( 19.8)	35.2 ( 25.2) 40.5 ( 61.2) 0	; 9.0 ( 31.6) 2.6 ( 12.5)
JUNE	_ 21+30	MS-PAC	30	0	50.5 ( 20.3)	39.5 ( 20.3)	2
JUNE JULY	ALL	MS-PAC MS-PAC MS-BS	56 46 48	16.2 ( 18.0) 32.6 ( 29.2) 12.3 ( 13.4)	50.5 ( 19.2) 31.0 ( 24.4) 30.3 ( 16.6)	33.2 ( 24.6) 28.0 ( 44.7)	3 3.+ ( <u>22.</u> 1) 5.4 ( 11.4)

Appendix Table F7. Estimates of the regional stock composition of brood year 1976 chinook salmon caught as immature age 1.3's in 1981.

MONTH	10-DAY PERIOD	AREA	N	ASIA76B	WEST76B	CENT76B	SEBC76B
JUNE JUNE JULY	11-20 21-30 1-10	E7050 E7050 E7050	49 74 26	14.2 ( 16.2) 13.9 ( 13.7) 0	55.0 ( 27.7) 36.7 ( 22.0) 49.4 ( 31.8)	26.2 ( 33.9) 43.4 ( 30.4) 19.0 ( 40.0)	4.6 ( 21.2) 6.1 ( 19.4) 31.7 ( 30.8)
TOLY TOLY TOUE TOUE	ALL ALL ALL ALL	E7048 E7050 E7048 E7050 8056	46 124 33 58 25	22.7 ( 19.9) 13.8 ( 10.5) 17.2 ( 22.1) 12.2 ( 15.3) 12.2 ( 19.6)	33.2 ( 25.5) 43.4 ( 17.8) 19.0 ( 27.1) 32.7 ( 24.4) 57.6 ( 31.3)	24.1 ( 34.3) 37.7 ′ 23.6) 37.2 ( 44.5) 48.8 ( 34.3) 30.1 ( 32.9)	20.0 ( 27.0) 5.1 ( 14.9) 26.6 ( 35.0) 6.3 ( 22.3)
JUNE JULY JULY JULY	11-20 21-30 1-10 11-20 21-31	5 5 5 5	64 95 39 32 25	11.8 ( 13.5) 13.6 ( 12.1) 0 32.9 ( 22.3) 36.1 ( 25.6)	54.0 ( 24.8) 35.7 ( 19.1) 33.6 ( 24.1) 25.8 ( 24.5) 38.0 ( 29.0)	32.8 ( 31.0) 37.2 ( 26.7) 21.4 ( 33.5) 41.3 ( 29.5) 25.9 ( 30.9)	1.5 ( 18.2) 13.5 ( 18.7) 45.0 ( 27.5) 0
IULY JULY JUNE	ALL ALL ALL	5 5 10	177 96 28	19.0 ( 9.8) 15.7 ( 12.7) 10.2 ( 17.7)	39.7 ( 14.7) 27.4 ( 18.2) 59.6 ( 29.7)	31.8 ( 19.6) 43.0 ( 27.2) 30.2 ( 31.2)	9.4 ( :3.2) 13.9 ( 19.1) 0
TOTA TOTA TOTA TOWE TOWE	2:-30 1-10 11-20 11-20	MS-PAC MS-PAC MS-PAC MS-PAC MS-BS MS-PAC	64 103 40 35 27 25	11.8 ( 13.5) 14.6 ( 11.9) 0.4 ( 11.7) 29.6 ( 21.2) 15.3 ( 22.0) 36.1 ( 25.6)	54.0 (,24.3) 35.0 ( 18.3) 29.3 ( 25.6) 30.1 ( 24.2) 62.9 ( 36.7) 38.0 ( 29.0)	32.3 ( 31.0) 36.0 ( 25.6) 26.1 ( 40.7) 40.3 ( 28.3) 17.7 ( 42.4) 25.9 ( 30.9)	1.5 ( 18.2) 14.4 ( 18.1) 44.1 ( 34.8) 0 4.1 ( 26.8)
JULY JULY	ALL	MS-PAC MS-PAC MS-BS	186 100 59	19.2 ( 9.6) 16.1 ( 12.6) 10.4 ( 12.3)	39.7 ( 14.3) 27.3 ( 17.3) 48.1 ( 20.9)	31.1 ( 19.1) 42.2 ( 26.6) 41.5 ( 22.8)	10.0 ( 13.0) 14.4 ( 18.8) 0

Appendix Table G1. Estimates of the western Alaskan stock composition of brood year 1971 chinook salmon caught as immature 1.2's in 1975.

нтиом	10-DAY PERIOD	AREA	N	ASIA/IA	YUK71A	KUSK71A	BRIS71A	CENT71A	SEBC71A
THE	11-20	E 2057	44	()	72.5 ( 47.7)	16. 6. ( 66. 8)	5.8 ( 33.0)	U	5.3 ( 11.1)
JULY	1-10		67	0	49.4 ( 12.8)		32.6 (28.6)		0
MILY	1-10		83	ő	74.4 ( 25.3)	0	21.3 ( 24.9)	0 .	4.2 ( 5.7)
JUNE	Al.L	E7054	44	0	72.5 (47.7)	16.4 ( 46.8)	5.8 ( 33.0)	0	5.3 (11.1)
JUNE		E7556	42	46,4 ( 25,5)	39.2 (31.2)	0	14.3 ( 25.0)	0	0
JU1.Y		£7058	72	12.5 ( 19.2)	32'.0 ( 34.6)	14.8 ( 36.1)	40.7 (33.3)	0	0
JULY	ALL	E7.558	90	0	16.5 ( 24.4)	0	18.5 ( 23.9)	Ð	5.0 ( 5.9)
JULY	ALL	8056	28	18.5 ( 27.1)	76.2 (49.9)	5.3 (47.6)	0	0	0
JUNE	11-20	6	79	36,6 ( 13,6)	63.4 (-13.6)	Ü	O	0	O
JUNE	11-20	8	59	41.1 ( 26.8)	47.1 ( 32.8)	0	11.3 ( 25.3)	0	0.5 ( 5.2)
	21-30	10	25	30.5 (30.6)	40.2 (41.2)	0	29.3 ( 36.8)	0	0
JIII.Y	1-10	6	78	7.8 (17.5)	35.8 (34.1)	19.5 (35.9)	36.8 ( 32.0)	0	U
JULY	1-10	8	111	4.2 (16.2)	74.2 ( 26.9)	0	19.5 ( 22.4)	0	2.1 ( 4.8)
Y.IUL	11-20	10	32	9.5 (23.4)	76.6 ( 37.7)	0 .	14.0 ( 31.4)	0	0
JUNE	ALI.	6	88	19.0 ( 13.0)	61.0 ( 13.0)	O	O	0	U
JULY	Al.l.	4	30	O .	53.9 ( 57.7)	25.2 ( 54.6)	9.3 (41.0)	11.6 ( 28.4)	0
JULY	ALL.	6	92	12.9 ( 17.3)	36.1 ( 31.5)	15.5 ( 32.5)	35.4 ( 29.1)	O	0
JULY	Al.L	н	127	4.8 ( 15.5)	74.9 ( 25.5)	0	16.9 ( 20.9)	0	3.5 ( 5.3)
7.1 UL	AL.Ł.	10	43	2.8 ( 18.1)	67.9 (33.7)	0	29.3 ( 30.2)	0	0
JUNE	11-20	MS-BS	139	35.8 ( 18.3)	58.0 ( 23.3)	0	5.2 ( 17.0)	0	1.0 ( 4.0)
JUNE	21-30	MS-BS	30	32.4 ( 28.3)	40.6 ( 37.6)	0	27.0 ( 33.1)	0	()
JULY	1-10 1	45-85	201	7.2 (13.1)	66.6 (21.1)	0	24.9 ( 18.0)	0 3.4 ( 28.5)	1.2 ( 3.2
JULY	11-20	MS-BS	86	5.3 ( 23.0)	66.9 (47.6)	8.7 ( 42.0)	13.8 ( 31.2)	3.4 ( 28.5)	1.9 ( 8.2
JUNE	ALL.	MS-BS	213	43.0 (15.8)	51.7 ( 19.5)		5.2 ( 14.2)		0.1 ( 2.9)
YJUL	Af.i.	MS-BS	292	6.4 (11.7)	69.2 ( 19.0)		22.7 ( 15.8)	0	1.7 ( 3.0)

Appendix Table G2. Estimates of the western Alaskan stock composition of brood year 1972 chinook salmon caught as immature 1.2's in 1976.

MONTIL	10-DAY PERIOD	ARFA	N	AS1A72A	Y18:72A	KUSK72A	BRIS72A	CENT72A	SEBC72A
tome '	11-20	£705/	25	43.6 ( 34.8)	54.6 ( 34.3)	0	0	1.8 ( 23.3)	0
JUNE	11-20		46	14.4 ( 22.3)	82.2 ( 24.8)	ő	0	3.4 ( 18.5)	0
	11-20		29	33.9 ( 36.3)	46 T ( 54 6)	7.7 ( 46.9)	0	12.2 ( 29.3)	0
	21-30	8054	42	15.9 ( 29.2)	37 3 ( 50 8)	13.1 ( 74.3)	17.9 ( 45.6)		0
	21-30	8056	25	0		()	64.4 ( 34.2)	0	8.4 ( 16.0
	11-20	E7558	26	34.9 ( 40.4)	•	ő		18.6 ( 34.4)	0
	11-20	8056	43	0	26.6 (41.7)	45.9 ( 64.0)	4.7 ( 38.6)		ő
Juli	11-20	00.70	4,	0	2010 ( 41.7)	43.7 ( 04.0)	447 ( 3040)	2217 ( 2311)	Ū
JUNE	ALL	E7054	28	36.5 ( 45.5)	54.7 ( 65.6)	1.3 (86.4)	1.8 ( 42.2)	5.7 ( 27.4)	0
JUNE	Al.L	E7056	46	14.4 ( 22.3)	82.2 ( 24.8)	0	0	3.4 (18.5)	ő
JUNE	ALL	£7554	36	25.7 ( 34.5)	45.0 ( 58.6)	22.8 ( 85.6)	0.5 (44.5)	6.0 (24.6)	0
JUNE	Al.l.	E7556	27	18.8 ( 33.9)	28.6 ( 55.2)	31.1 (53.2)	0	21.5 ( 32.9)	0
JUNE	ALL	8054	65	6.0 (19.8)	31.1 (42.2)	31.7 (67.1)	17.7 (41.5)	13.5 ( 21.0)	0
JUNE	ALL	8056	25	0	27.1 ( 32.4)	0 0 0	64.4 ( 34.2)	0	8.4 ( 16.0
JULY	Al.l.	E7058	47	38.2 ( 30.5)	47.3 ( 12.9)	0	3.6 (19.5)	10.9 (23.5)	0
JULY	Al,I,	E7558	32	26.0 ( 34.1)	50.2 (40.4)	0	11.4 ( 27.5)	12.4 ( 28.7)	0
JULY	ALL	8056	51	12.2 ( 26.2)	19.4 ( 42.9)	33.3 ( 70.8)	8.5 ( 42.5)	26.6 ( 27.7)	0
JULY	Al.l.	8058	29	0	83.8 ( 42.7)	16.2 (43.4)	0	0	0.0 ( 8.9
JUNE	11-20	6	71	24.7 ( 19.7)	72.5 ( 20.9)	0	0	2.8 ( 15.0)	0
JUNE	11-20	В	56	32.1 ( 29.3)	30.7 ( 36.4)	20.6 ( 36.8)	0	12.5 ( 28.0)	4.1 ( 14.7
JUNE	21-30	8	45	6.3 (21.6)	36.9 ( 49.5)	53.1 (47.7)	0	3.7 (19.9)	0
JUNE	21-30	10	73	11.5 ( 20.2)	36.1 ( 38.5)		38.9 ( 39.0)	11.9 ( 18.9)	0
JULY	1-10	8	41	22.2 ( 28.5)	58.0 ( 37.5)	0	17.5 ( 26.7)	2.3 (21.1)	0
JULY	11-20	8 .	33	21.8 ( 34.2)	34.4 ( 36.4)	0	10.8 ( 26.6)	33.0 ( 34.5)	0
	11-20	10	68	10.5 ( 19.3)	20.3 ( 38.6)	61.0 ( 39.0)	0	8.2 (17.4)	0
JUNE	ALI.	6	74	14.6 ( 21.8)	82.0 ( 28.7)	0	0.0 ( 16.2)	3.3 ( 17.6)	0
JUNE	ALL	8	104	19.6 ( 17.6)	36.0 ( 31.2)	32.6 ( 29.5)	0	11.8 ( 15.5)	0
JUNE	Al.L	10	96	5.9 ( 15.9)	32.2 ( 34.4)	16.9 (53.8)	33.8 ( 35.9)	11.3 ( 16.5)	0
JULY	A1.1.	6	47	38.2 ( 30.5)		0	3.6 (19.5)	10.9 (23.5)	0
JULY	Al.i.	8	74	22.0 ( 22.3)		0	14.5 ( 19.3)	16.0 ( 20.1)	0
JULY	ALL.	10	90	14.7 ( 17.9)	17.1 ( 33.0)	58.0 ( 33.9)	0	10.2 ( 15.8)	0

## Appendix Table G2. Continued.

ONTIL	10-DAY PERIOD AREA	N	ASTA72A	YUK72A	KUSK72A	BR1S72A	CENT72A	SEBC72A
JUNE	11-20 MS-BS	173	15.0 ( 15.9)	58.6 ( 30.8)	11.7 ( 42.0)	0.3 ( 21.0)	14.4 ( 14.1)	0
JUME	21-30 MS-BS	118	8.7 (45.6)	41.0 (33.3)	19.0 (50.1)	23.3 (31.1)	8.1 (14.3)	Ü
JULY.	1-10 MS-BS	59	21.6 ( 24.7)	50.2 (30.1)	0	11.4 (21.2)	14.8 ( 22.1)	O
JULY	11-20 MS-BS	113	16.1 ( 18.5)	33.4 ( 32.9)	30.5 ( 50.9)	4.6 ( 28.6)	15.4 ( 16.8)	Ü
JOLY	21-31 MS-BS	44	28.8 ( 28.4)	55.4 ( 48.0)	13.4 (42.1)	0	2.5 ( 20.6)	0
JUNE	ALL MS-BS	297	12.6 ( 11.9)	50.3 ( 24.3)	15.9 ( 34.6)	9.9 ( 19.0)	11.3 ( 10.5)	0
JULY	ALL MS-BS	216	18.7 ( 14.5)	42.5 ( 25.9)	19.6 ( 37.6)	4.7 ( 20.3)	14.6 ( 12.5)	U

Appendix Table G3. Estimates of the western Alaskan stock composition of brood year 1973 chinook salmon caught as immature 1.2's in 1977.

монтн	10-DAY PERIOD	AREA	N	ASIA73A	YIIK7 3A	KUSK73A	BRIS73A	CENT73A	SEBC73A
JUNE	21-30	8056	73	0	29.1 ( 34.7)	24.7 ( 38.8)	46.2 ( 22.6)	0	0
JULY	1-10	8058	28	0	0	45.3 ( 39.8)	54.5 ( 38.9)	0	0.2 ( 8.9
JULY	11-20	8054	34	0	0	70.6 ( 46.1)	15.7 ( 38.1)	9.0 (26.0)	4.7 ( 13.7
JULY	11-20	8056	67	0	47.1 ( 37.9)	5.3 (39.1)	42.5 ( 25.7)	0	5.1 ( 8.0
JULY	11-20	8058	63	17.7 ( 27.9)	11.0 ( 39.8)	27.8 ( 60.8)	38.0 ( 33.0)	0	3.5 ( 8.5
JULY	21-31	8056	27	12.8 ( 25.2)	23.9 ( 34.4)	0	63.3 ( 32.3)	v	0
JUNE	Al.L	E7550	52	ρ	43.0 ( 26.2)	0	17.0 ( 20.6)	39.9 ( 19.9)	0
JUNE	ALL	E7552	28	Ü	42.4 ( 59.6)	29.4 (65.7)	22.0 ( 36.4)	0	6.2 ( 13.5
JUNE	Al.L	8056	81	0	27.7 ( 34.7)	34.0 ( 39.2)	38.3 (21.5)	0	0
JULY	ALL	8054	41	0	0	72.7 ( 42.9)	14.9 ( 35.5)	8.9 ( 24.0)	3.5 (11.0
JULY	ALL	8056	100	3.2 ( 22.1)	34.0 ( 42.6)	15.2 ( 56.2)	44.7 ( 28.4)	1.0 ( 15.8)	1.9 ( 7.5
JULY	AI.L	8058	111	6.6 ( 19.9)	5.7 ( 32.5)	45.1 ( 52.9)	37.6 ( 27.8)	0	5.1 ( 7.5
JUNE	21-30	8	31	3.6 ( 24.8)	54.7 ( 39.8)	0	35.8 ( 34.4)	0	5.9 ( 12.4
JUNE	21-30	10	80	0	26.3 ( 33.0)	25.9 ( 37.3)	47.9 (21.8)	0	0
JULY	1-10	10	34	0	0	48.5 ( 36.3)	48.8 ( 35.5)	0	2.7 ( 10.
JULY	11-20	10	166	4.9 ( 18.6)	27.0 ( 33.1)	19.9 ( 45.3)	41.3 ( 22.6)	2.3 (13.7)	4.6 ( 7.5
JULY	21-31	10	54	0	31.0 ( 40.1)	21.6 ( 45.2)	47.1 ( 29.4)	O	0.4 ( 5.1
JUNE	AJ.L	8	41	0	47.0 ( 50.7)	26.3 ( 55.3)	22.9 ( 30.6)	0	3.7 ( 9.4
JUNE	At.L	10	99	0	23.2 ( 33.0)	46.6 ( 39.3)	27.7 ( 22.2)	0	2.5 ( 5.9
JULY	Al.L	10	254	4.1 ( 16.0)	21.7 ( 28.8)	28.6 ( 40.9)	39.7 (19.8)	0.3 (11.3)	5.5 ( 6.4
JUNE	11-20	4S-BS	29	0	28.7 ( 81.3)	66.9 (82.8)	0	0	4.4 ( 11.0
JUNE	21-30 1	4S-BS	111	0	27.9 ( 30.5)	36.0 ( 35.6)	32.9 ( 20.9)	0	3.2 ( 5.3
JULY	1-10	MS-BS	43	4.2 ( 26.6)	0	53.8 ( 52.1)	35.7 ( 38.8)	0	6.3 ( 10.9
JULY	11-20	MS-BS	190	8.1 ( 18.9)	26.1 ( 30.7)	17.7 ( 42.1)	40.1 (21.0)	4.7 ( 14.1)	3.3 ( 6.8
JULY	21-31	MS-8S	69	14.4 ( 25.6)	30.5 ( 42.5)	21.1 ( 58.3)	29.0 ( 29.8)	0	4.9 ( 8.8
JUNE	ALL I	MS-BS	140	0	30.2 ( 29.1)	40.6 ( 33.9)	26.3 ( 18.8)	0	2.9 ( 5.1
JULY	ALL	MS-BS	302	10.9 ( 16.4)	24.0 ( 25.9)	20.4 ( 36.3)	38.5 ( 17.6)	1.1 ( 11.0)	5.1 ( 5.1

MONTH	10-DAY PERIOD		N	ASIA74A	YUK74A	KUSK74A	HRIS74A	CENT74A	SEBC74A
JUNE	11-20	E7046	45	14.4 ( 24.8)	44.8 ( 37.9)	16.0 ( 40.1)	U	4.5 ( 27.2)	20.2 ( 20.5)
JUNE	11-20	E7050	34	20.2 (22.4)	56.2 (31.5)	23.6 ( 34.7)	0	O	0
JULY	1-10	E7050	158	39.6 (15.5)	27.7 ( 14.6)	0	0	23.1 ( 15.7)	9.6 ( 7.8)
JULY	1-10	8056	29	11.7 ( 18.7)	86.6 (20.1)	0	0	0	1.7 ( - 8.4)
Y.IIIL	11-20	8056	35	9.1 ( 22.8)	46.1 ( 36.5)	0	16.1 ( 30.4)	18.0 ( 33.8)	10.7 ( 19.6)
J01.Y	11-20	8058	28	0	72.9 ( 39.4)	2.4 (40.1)	18.8 ( 35.9)	0	5.9 (13.6)
JULY.	21-31	E7048	26	22.5 ( 38.1)	23.3 (43.3)	0	0	30.0 (47.2)	14.3 ( 26.6)
YARIL	21-31	E7548	32	22.3 ( 36.7)	22.5 (41.8)	39.7 ( 55.1)	0	9.9 (33.2)	5.5 ( 15.8)
JUNE	ALL	E7050	84	13.9 ( 20.6)	39.1 ( 29.3)	24.9 ( 31.1)	0	21.4 ( 25.7)	0.8 ( 8.6)
JULY	Al.L	E6550	25	44.9 (29.3)	44.2 ( 31.1)	0	0	10.9 ( 26.2)	0
JULY.	ALI.	E7050	252	36.0 (12.5)	30.7 ( 12.1)	0	0	21.7 ( 13.0)	11.7 ( 6.7)
JULY	Al.l.	8056	64	5.3 (14.4)	68.5 ( 28.5)	0	11.9 (23.2)	7.1 (21.2)	7.2 ( 12.2)
JULY	AL.).	8058	28	0	72.9 ( 39.4)	2.4 ( 40.1)	18.8 ( 35.9)	0	5.9 ( 13.6)
JUNE	11-20	5	103	18.3 ( 18.0)	46.6 ( 26.4)	10.9 ( 2/.1)	0	13.8 ( 21.5)	10.4 ( 11.4)
JULY	1-10	10	31	0	91.6 ( 9.7)	0	0	O .	8.4 ( 9.7)
JULY	11-20	10	71	10.0 ( 15.9)	62.5 ( 27.1)	()	13.4 ( 22.3)	7.8 ( 20.4)	6.3 (11.1)
JUL.Y	21-31	3	26	22.5 ( 38.1)	23.2 ( 43.3)	10.0 (46.1)	0	30.8 (47.2)	14.3 ( 26.6)
JUI.Y	21-31	5	51	35.5 ( 18.8)	42.4 (19.4)	0	0	0	22.1 (13.9)
JULY	21-31	7	60	15.1 ( 25.4)	25.2 ( 31.8)	31.5 ( 38.8)		24.0 ( 30.3)	4.3 ( 12.7)
JULY	21-31	9	32	5.0 (21.1)	60.6 ( 39.9)	25.3 (42.4)	0	9.1 ( 25.2)	0
JUNE	Al.i.	5	261	16.2 ( 12.2)	43.8 ( 18.1)	10.8 ( 38.6)	0	21.0 ( 16.5)	8.2 ( 7.6)
JULY	Al.L	3	50	19.5 ( 22.2)	50.7 ( 26.1)	0	U	24.8 ( 27.1)	5.1 ( 11.0)
Y.IUL	ALI.	7	71	17.7 ( 23.7)	28.5 ( 29.7)	24.8 ( 34.6)	0	26.2 ( 28.8)	2.8 ( 11.2
JULY	Al.L	9	68	3.3 (14.8)	58.0 ( 28.2)	23.5 ( 29.3)	0	15.2 ( 19.7)	0
JULY	ALI.	10	103	6.6 (12.1)	<b>69.5 ( 23.3)</b>	0	11.1 ( 18.8)	6.8 (17.1)	6.0 ( 9.2)

Appendix Table G4. Continued.

MONTH	10-DAY PERIOD 'AREA	N	ASIA74A	YUK74A	KUSK74A	BR1S74A	CENT74A	SEBC74A
JUNE	11-20 MS-PAC	103	18.3 ( 18.0)	46.6 ( 26.4)	10.9 ( 27.1)	o	13.8 ( 21.5)	10.4 ( 11.4)
JUNE	21-30 MS-BS	27	0	87.3 ( 33.1)	11.6 ( 32.7)	0	0	1.1 (8.8)
JULY	I-10 MS-PAC	239	37.7 (13.0)	31.4 ( 12.6)	0	0	22.6 ( 13.4)	8.3 ( 6.2)
JULY	1-10 MS-BS	32	0	84.6 ( 26.4)	0	10.8 ( 24.9)	0	4.6 ( 10.2)
JULY	11-20 MS-BS	79	8.4 ( 14.5)	64.3 ( 25.9)	0	12.4 ( 21.1)	8.0 ( 19.6)	6.9 ( 10.9)
JULY	21-31 MS-PAC	169	21.7 ( 16.0)	34.7 ( 20.5)	19.1 ( 23.2)	0	18.1 ( 18.1)	6.3 ( 8.2)
JUNE	ALL MS-PAC	264	16.4 ( 12.2)	43.0 ( 18.0)	10.5 ( 18.4)	O	22.1 ( 16.7)	7.9 ( 7.6)
JUNE	ALL MS-BS	39	0	91.4 ( 33.0)	4.3 ( 36.1)	3.7 ( 26.2)	0	0.7 ( 7.4)
JULY	ALL MS-BS	116	11.7 ( 13.5)	68.9 ( 27.6)	2.0 ( 24.1)	7.3 ( 20.9)	5.0 ( 16.8)	5.1 ( 9.0)

Appendix Table G5. Estimates of the western Alaskan stock composition of brood year 1975 chinook salmon eaught as immature 1.2's in 1979.

JUNE 21-30	-10 -20 -20		70				BRIS75A	CENT/5A	SEBC75A
JULY 11-20 JULY 21-31 JULY 21-31 JULY 21-31 JULY ALL JULY 21-30 JULY 1-10 JULY 11-20 JULY 21-31 JULY 21-31 JULY 21-31 JULY ALL	-20 -20		79	11.5 ( 14.7)	42.7 ( 20.5)	13.6 ( 18.0)	0	32.2 ( 22.0)	O
JULY 11-20 JULY 21-31 JUNE ALL JULY 1-10 JULY 1-20 JULY 1-20 JULY 1-20 JULY 21-31 JULY 21-31 JULY ALL JULY ALL JULY ALL JULY ALL JULY 1-31 JULY 1-31 JULY ALL JULY ALL JULY ALL JULY ALL JULY ALL JUNE 1-10 JUNE 1-10 JUNE 1-10	-20	E7558	26	O	55.7 ( 40.2)	31.6 (49.5)	2.2 (49.5)	10.5 ( 22.8)	0
JULY 21-31 JUNE ALL JULY ALL JUNE 11-20 JUNE 21-30 JULY 1-10 JULY 11-20 JULY 11-20 JULY 21-31 JULY 21-31 JULY ALL JUNE 1-10 JUNE 1-10 JUNE 1-10 JUNE 1-10 JUNE 21-30		E7556	96	0	35.2 ( 20.9)	12.7 ( 25.0)	23.4 ( 29.6)	28.7 ( 16.4)	0
JULY 21-31 JUNE ALL JULY 1-10 JULY 1-20 JULY 11-20 JULY 11-20 JULY 21-31 JULY 21-31 JULY 21-31 JULY ALL		8056	80	Ð	21.4 ( 20.5)	42.5 ( 12.9)	16.1 ( 34.3)	19.9 ( 15.6)	0
JUNE ALL JULY I-10 JULY 1-10 JULY 11-20 JULY 11-20 JULY 21-31 JULY 21-31 JULY 21-31 JULY ALL JUNE 1-10 JUNE 1-10 JUNE 1-10 JUNE 1-10 JUNE 21-30	- 51	8050	56	12.3 ( 19.5)	0	52.7 ( 23.2)	0	33.4 ( 31.7)	1.6 ( 11.7)
JUNE ALL JULY 1-10 JULY 1-10 JULY 1-20 JULY 11-20 JULY 11-20 JULY 21-31 JULY 21-31 JULY 21-31 JULY ALL	- 31	8056	28	0	42.5 ( 38.8)	20.6 (49.0)	27.1 ( 56.3)	9.9 (21.1)	0
JULY ALL JULY ALL JULY ALL JULY ALL JULY ALL JUNE 11-20 JUNE 21-30 JULY 1-10 JULY 1-10 JULY 11-20 JULY 21-31 JULY 21-31 JULY 21-31 JULY ALL JULY ALL JULY ALL JULY ALL JULY ALL JULY ALL JUNE 1-10 JUNE 1-10 JUNE 1-10 JUNE 1-10 JUNE 1-30	-31	8058	39	0	23.1 ( 26.1)	39.8 (43.4)	37.1 ( 49.0)	0	0
JULY ALL JULY ALL JULY ALL JUNE 11-20 JUNE 21-30 JULY 1-10 JULY 11-20 JULY 11-20 JULY 21-31 JULY 21-31 JULY 21-31 JULY ALL JULY ALL JULY ALL JUNE 1-10 JUNE 1-10 JUNE 1-10 JUNE 1-10 JUNE 21-30	LL.	E7050	93	12.3 ( 13.8)	42.1 ( 19.0)	15.2 ( 17.0)	0	30.3 ( 20.1)	0
JULY ALL JULY ALL JUNE 11-20 JUNE 21-30 JULY 1-10 JULY 11-20 JULY 11-20 JULY 11-20 JULY 21-31 JULY 21-31 JULY ALL	l.L	E7556	118	t)	42.0 (19.4)	17.9 ( 22.9)	14.4 ( 25.7)	25.8 ( 14.5)	0
JULY ALL JUNE 11-20 JUNE 21-30 JULY 1-10 JULY 1-20 JULY 11-20 JULY 11-20 JULY 21-31 JULY 21-31 JULY ALL JULY ALL JULY ALL JULY ALL JULY ALL JUNE 1-10 JUNE 1-10 JUNE 21-30	LL.	E7558	35	0	54.7 ( 35.0)	33.6 ( 44.2)	5.4 ( 45.0)	6.3 (17.3)	. 0
JULY ALL  JUNE 11-20  JUNE 21-30  JULY 1-10  JULY 11-20  JULY 11-20  JULY 21-31  JULY 21-31  JUNE ALL  JULY ALL  JULY ALL  JULY ALL  JUNE 1-10  JUNE 1-10  JUNE 21-30	1,1.	8050	62	13.3 ( 18.7)	0	54.5 ( 22.1)	0	30.9 ( 29.H)	1.3 (10.7)
JUNE 11-20 JUNE 21-30 JULY 1-10 JULY 11-20 JULY 11-20 JULY 21-31 JULY 21-31 JULY ALL JULY ALL JULY ALL JULY ALL JULY ALL JUNE 1-10 JUNE 1-10 JUNE 21-30	LL	8056	125	1.0 ( 9.8)	30.2 (19.9)	26.9 ( 30.5)	15.7 ( 3E.0)	26.2 ( 19.3)	0
JUNE 21-30 JULY 1-10 JULY 11-20 JULY 21-31 JULY 21-31 JULY 21-31 JULY ALL	l. <b>l.</b>	8058	50	0	27.5 ( 27.6)	38.8 ( 42.7)	32.9 (47.1)	0.8 ( 10.2)	0
JULY 1-10 JULY 1-10 JULY 11-20 JULY 11-20 JULY 21-31 JULY 21-31 JULY ALL	-20	5	29	15.0 (25.5)	32.5 ( 31.4)	22.7 ( 31.0)	0	29.8 ( 34.3)	0
JULY 1-10 JULY 11-20 JULY 11-20 JULY 21-31 JULY 21-31 JULY ALL	-30	5	89	14.4 ( 15.0)	36.7 ( 18.8)	15.1 ( 17.3)	0	33.8 ( 21.2)	0
JULY 11-20 JULY 11-20 JULY 21-31 JULY 21-31 JUNE ALL JULY ALL JULY ALL JULY ALL JUNE 1-10 JUNE 1-10	-10	8	48	0	65.7 (23.6)	19.0 (21.1)	0	15.2 (17.3)	0
JULY 11-20 JULY 21-31 JULY 21-31 JUNE ALL JULY ALL JULY ALL JULY ALL JUNE 1-10 JUNE 21-30	-10	10	33	4.5 ( 20.6)	52.1 ( 39.9)	15.9 ( 48.2)	2.6 (47.1)	24.8 ( 35.5)	O
JULY 21-31 JULY 21-31 JULY ALL JULY ALL JULY ALL JULY ALL JUNE 1-10 JUNE 21-30	-20	8	96	O	35.2 (20.9)	12.7 ( 25.0)	23.4 ( 29.6)	28.7 ( 16.4)	()
JULY 21-31  JUNE ALL  JULY ALL  JULY ALL  JUNE 1-10  JUNE 21-30	-20	10	84	0	23.6 ( 20.3)	44.8 ( 32.2)	13.0 ( 33.2)	18.7 ( 15.0)	0
JUNE ALL JULY ALL JULY ALL JULY ALL JUNE 1-10 JUNE 21-30	-31	9	70	17.4 (19.1)	0	50.1 ( 21.0)	0	32.0 ( 28.7)	0.5 ( 9.9
JULY ALL JULY ALL JULY ALL JUNE 1-10 JUNE 21-30	-31	10	67	0	29.0 ( 24.5)	31.4 ( 36.6)	38.0 ( 41.4)	1.5 ( 9.4)	0
JULY ALL JUNE 1-10 JUNE 21-30	l.L	5	132	16.0 ( 12.9)	36.2 ( 15.7)	17.8 ( 14.8)	O	30.0 ( 17.4)	Ð
JULY ALL  JUNE 1-10  JUNE 21-30	l.L	8	153	0	44.9 ( 17.5)	21.5 ( 20.9)	12.3 ( 23.0)	21.3 ( 12.2)	0
JUNE 1-10 JUNE 21-30	LL.	9	78	19.0 ( 18.8)	0	50.0 ( 20.0)	0	30.9 ( 27.3)	0.1 ( 9.0)
JUNE 21-30	l.l.	10	184	0.6 ( 7.5)	28.3 ( 16.7)	29.4 ( 26.9)	20.6 ( 27.7)	21.2 ( 15.3)	O
	-10 M	IS-PAC	25	23.6 (42.2)	24.6 ( 43.6)	14.2 ( 60.8)	18.0 ( 64.2)	17.9 ( 54.2)	1.8 ( 17.5)
THE 1 10	-30 N	4S-PAC	90	14.1 ( 14.9)	36.1 ( 18.7)	16.4 ( 17.4)	0	33.3 ( 21.0)	0
10LY 1-10	-10 M	1S - BS	81	0	60.5 ( 18.5)	19.7 ( 16.7)	0	19.8 ( 14.5)	0
JULY 11-20	-20 M	IS-BS	200	2.8 ( 9.4)	27.1 ( 15.9)	24.9 ( 24.6)	15.3 ( 25.0)	29.8 ( 16.8)	0
JULY 21-31	-31 M	1S-BS	78	0	34.6 ( 23.3)	31.3 ( 33.6)	33.8 ( 37.8)	0.4 ( 8.2)	0
JUNE ALL JULY ALL		IS-PAC	151 359	16.0 ( 12.4) 1.3 ( 6.5)	33.0 ( 14.5) 34.5 ( 13.2)	18.2 ( 14.1) 25.8 ( 19.8)	0 15.2 ( 20.3)	32.8 ( 16.9) 23.1 ( 12.3)	0

Appendix Table G6. Estimates of the western Alaskan stock composition of brood year 1976 chinook salmon caught as immature 1.2's in 1980.

	I ()-DAY									
MONTH	PERTOD	AREA	N	ASTA76A	YUK / 6A	KUSK/6A	BRIS76A	CENT76A	SEBC76A	
ָלַוּטנ	1-10	E7054	56	12.1 ( 10.8)	69.3 ( 31.3)	18.6 ( 30.8)	O	0	0	
JULY	1-10	E7556	130	8.2 ( 6.4)	60.9 (22.2)	30.9 ( 22.3)	0	0	0	
JULY	1-10	8056	51	4.9 ( 10.7)	50.6 ( 48.8)	29.7 (45.3)	14.7 (35.5)	0	0	
JHLY	11-20	E7052	41	0	59.0 (23.3)	0	0	18.8 ( 30.8)	22.2 ( 24.2)	
JULY	11-20	E7556	91	10.2 ( 8.1)	62.8 ( 25.6)	27.0 ( 25.5)	0	0	0	
JULY	11-20	8054	28	0		35.1 ( 32.0)	0	0	0	
Y.IUL	11-20	8056	88	0	41.9 ( 28.8)	54.2 ( 28.9)	0	1.9 ( 11.1)	0	
JULY	21-31	E7558	29	1.0 ( 9.3)	59.7 ( 42.4)	54.2 ( 28.9) 0	39.3 (40.2)	0	O	
JUNE	ALL	E7050	73	7.4 ( 10.2)	70.9 ( 36.5)		0	12.4 ( 18.6)	0	
JULY	Al.L	E7052	41	0	59.0 (23.3)	()	0	18.8 ( 30.8)	22.2 ( 24.2)	
JULY	ALL.	E7054	75	4.6 ( 9.4)	46.9 (36.4)	41.1 ( 38.1)	U	7.5 ( 16.7)	0	
JULY	Al.L	E7556	223	8.9 ( 5.1)	61.6 ( 18.1)	29.5 ( 18.2)	O	O .	0	
JU1.Y	ALI.	E7558	29	1.0 ( 9.3)	59.7 (42.4)	()	39.3 (40.2)	O .	0	
JULY	Al.L	8054	28	0	64.9 ( 12.0)	35.1 ( 32.0)	0	0	0	
JULY	Al.I.	8056	139	4.1 ( 6.8)	33.4 ( 30.8)	53.9 ( 31.0)	8.6 ( 21.7)	0	O	
JUNE	1-10	5	27	19.2 ( 25.3)	50.7 (33.8)	0	0	7.8 (42.6)	22.2 ( 30.9)	
JUNE	11-20	5	32	0	85.0 ( 17.1)	0	0	15.0 ( 17.1)	0	
JULY	1-10	6	56	12.1 ( 10.8)	69.3 (31.3)	18.6 ( 30.8)	0	0	0	
JULY	1-10	8	130	8.2 ( 6.4)	60.9 ( 22.2)	30.9 ( 22.3)	0	0	0	
JULY	1-10	10	57	4.1 ( 9.6)	54.0 ( 46.9)	29.3 (43.3)	12.6 ( 33.6)	0	0	
JULY	11-20	6	30	8.0 ( 19.6)	47.0 ( 79.2)	25.1 ( 84.2)	6.2 ( 46.0)	13.7 ( 32.8)	0	
JULY	11-20	8	105	9./ (7.4)	65.9 ( 24.2)	24.4 ( 24.1)	0	()	0	
JULY	11-20	10	116	1.9 ( 6.7)	27.8 (33.6)	66.5 ( 14.6)	3.9 ( 23.0)	0	0	
JULY	21-31	8	31	0.8 ( 8.7)	59,5 (41.1)	0	39.8 ( 39.0)	0	0	
JULY	Al.L	6	93	9.8 ( 10.4)	39.2 ( 29.1)	49.2 ( 31.6)	0	0	1.8 ( 7.9)	
JULY	ALL	8	266	8.4 ( 4.6)	62.5 (17.2)	29.1 ( 17.2)	0	()	0	
JULY	Al.i.	10	185	2.1 ( 5.5)	33.0 ( 28.1)	59.6 ( 28.5)	5.3 (19.4)	0	0	
JUNE	1-10 1	MS-PAC	29	17.8 ( 23.7)	56.0 ( 32.9)	0	0	5.3 (40.1)	20.9 ( 28.9)	
JUNE	11-20 (	4S-PAC	3.1	0	78.1 ( 42.6)	4.5 ( 39.0)	0	17.4 (23.2)	0	
JULY	1-10		243	7.6 ( 4.7)	66.8 (17.9)	25.6 (17.9)	0	0	0	
JULY	11-20 (	4S-BS	251	6.2 ( 4.4)	54.6 ( 17.5)	39.3 (17.7)	0	0	0	
JULY			50	U	58.6 ( 24.5)	41.4 ( 24.5)	O	0 ′	0	
JULY	AL.L. 1	uc_ne	544	6.4 ( 3.2)	60.3 ( 14.1)	33.3 ( 14.2)	0	O	0	

Appendix Table G7. Estimates of the western Alaskan stock composition of brood year 1977 chinook salmon caught as immature 1.2's in 1981.

нтиом	10-DAY PERIOD	AREA	N	ASTA7/	YUK7 <i>1</i>	KUSK77	BRIS77	CENT77	SEBC77
JUNE	11~20	E7050	79	20.8 ( 16.5)	55.0 ( 32.9)	10.5 ( 36.6)	9.0 ( 16.6)	o	4.6 ( 7.8
JULY	1~10	E7556	48	U	74.2 ( 33.2)	0.5 (35.7)	16.5 ( 18.9)	8.9 (17.4)	0
JULY	11-20	E7050	424	17.8 ( 7.8)	22.9 (12.3)	11.9 ( 15.0)	12.4 ( 8.0)	30.3 (11.7)	4.8 ( 5.6
JULY	11-20	E7052	33	3.7 (15.6)	24.3 (40.5)	31.5 (51.3)	16.9 ( 28.1)	23.6 ( 31.8)	0
JULY	11-20	E7556	71	1.3 ( 9.3)	61.3 ( 32.6)	14.5 ( 36.5)	6.8 ( 14.0)	16.2 (19.8)	0
JULY	11-20	8056	65	8.5 (13.5)			19.7 (18.8)	10.8 (18.3)	0
	21-31		27	0	21.4 ( 34.8)		0	31.5 ( 27.3)	0
JUNE	ALL	E7050	279	19,2 ( 9,6)	37.7 ( 17.5)	20.5 ( 20.9)	1.0 ( 7.0)	18.9 ( 12.7)	2.7 ( 5.0
JULY		E7052	37	6.8 (16.7)	21.8 ( 36.2)	24.7 (48.5)	26.1 ( 29.3)	20.5 ( 28.6)	0
JULY	Al.L	E7556	146	0.1 (6.3)	58.7 ( 23.9)	15.8 ( 26.9)	5.1 ( 9.6)	20.3 (15.0)	0
JULY	ALL.	8056	111	5.9 ( 8.8)	62,3 (-17,0)	0	15.1 ( 11.4)	16.7 (-13.9)	0
JUNE	11-20	5	107	26.5 (15.4)	50.6 ( 28.7)	12.7 ( 31.4)	5.0 (12.8)	0	5.2 ( 7.0
JULY	1-10	8	48	0	74.2 ( 33.2)	0.5 (35.7)	16.5 ( 18.9)	8.9 (17.4)	0
JULY.	11-20	8	71	1.3 ( 9.3)	61.3 ( 32.6)	14.5 ( 36.5)	6.8 ( 14.0)	16.2 ( 19.8)	0
JULY	11-20	10	76	8.5 ( 12.5)	51.1 ( 30.1)	14.6 ( 34.8)	18.9 ( 17.8)	7.0 ( 16.1)	0
JUNE	ALL	5	371	22.1 ( 9.0)	38.9 ( 15.6)	14.0 ( 17.6)	0.7 ( 5.6)	22.1 ( 11.5)	2.2 ( 4.4
JULY	Al.l.	8	161	0	64.1 ( 20.2)	15.1 ( 23.3)	11.7 ( 10.2)	9.1 (40.5)	0
JULY	ALL	10	122	6.9 ( 9.6)	58.2 ( 24.9)	6.6 ( 27.1)	15.3 (13.0)	13.0 ( 14.4)	0
JUNE	11-20 1	MS-PAC	107	26.5 ( 15.4)	50,6 ( 28.7)	12.7 ( 31.4)	5.0 (12.8)	O .	5.2 ( 7.0
JULY	1-10 1	15-BS	75	0	66.2 (27.4)	9.0 (30.8)	17.4 ( 15.9)	7.4 (13.9)	O
JULY	11-20 1	4S-BS	147	5.0 ( 8.1)	56.0 ( 23.3)	14.5 ( 26.6)	13.0 ( 11.7)	11.4 ( 13.1)	0
JULY	Al.L I	4S-BS	301	2.5 ( 5.5)	60.9 ( 18.3)	11.6 ( 20.6)	10.1 ( 7.8)	15.0 ( 10.3)	0

Appendix Table H1. Estimates of the western Alaskan stock composition of brood year 1970 chinook salmon caught as immature 1.3's in 1975.

	10-DAY PERIOD AREA	A N	AS1A70	YUK70	KUSK70	BR1870	CENT70	SEBC70	
JUNE	ALL MS-BS	27	4.1 ( 21.5)	37.3 ( 51.2)	0	49.1 ( 54.9)	9.5 ( 24.7)	0	_

Appendix Table H2. Estimates of the western Alaskan stock composition of brood year 1972 chinook salmon caught as immature 1.3's in 1977.

онти	10-DAY PERLOD	AREA	N	AS1A72B	YUK72B	KUSK72B	BRIS72B	CENT72B	SEBC72B
JULY	ALI.	8058	32	28.9 ( 34.2)	23.4 ( 44.2)	41.1 ( 47.7)	0	6.5 ( 24.0)	o
JUNE	11-20	7	34	23.0 ( 37.0)	7.8 ( 42.2)	21.0 ( 65.6)	20.2 ( 45.4)	27.9 ( 33.9)	0
JULY	11-20	10	32	7.6 ( 26.4)	25.8 ( 47.4)	59.8 ( 50.2)	0	6.8 ( 24.1)	0
JUNE	Al.l.	7	54	30.4 (31.3)	13.9 ( 34.9)	10.5 (49.2)	19.8 ( 34.1)	25.4 ( 26.6)	0
JUNE	Al.I.	В	32	24.7 ( 32.4)	43.4 (48.6)	31.1 ( 48.0)	0	0.8 (21.5)	O
JUNE	ALI.	10	27	t1.2 ( 29.1)	64.3 ( 56.1)	17.6 ( 77.2)	4.8 (46.7)	0	0
JULY.	Al.I.	10	49	24.5 ( 26.9)	16.0 (35.5)	53.0 ( 39.9)	0	6.5 (19.4)	0
JUNE	11-20 M	S-PAC	41	26.3 ( 32.6)	7.3 ( 36.6)	27.0 ( 57.8)	12.1 ( 3/.1)	27.2 ( 29.0)	0
JUNE	21-30 #	S-BS	46	12.2 ( 20.2)	57.0 ( 35.3)	30.9 ( 36.3)	0	0	Ü
JULY	11-20 H	S-BS	35	15.8 (28.6)	21.1 (43.9)	57.8 ( 47.7)	0	5.1 ( 22.2)	Ü
JUNE	ALL M	S-BS	59	15.9 ( 18.7)	51.7 ( 30.9)	32.4 ( 32.2)	0	0	0
JULY	ALI. M	S-BS	59	38.8 ( 27.3)	9.0 (30.4)	49.0 ( 36.2)	0	3.2 (16.6)	0

Appendix Table H3. Estimates of the western Alaskan stock composition of brood year 1973 chinook salmon caught as immature 1.3's in 1978.

MONTH	10-DA PERIO	-	N	ASTA7 1B	YUK / 3 B	KUSK73B	вк1873в	CENT73B	SEBC73B
JULY	Al.1.	MS-PAC	53	0	18.5 ( 43.0)	23.1 ( 49.7)	6.9 ( 25.4)	40.8 ( 29.5)	10.6 ( 17.9)

Appendix Table H4. Estimates of the western Alaskan stock composition of brood year 1975 chinook salmon caught as immature 1.3's in 1980.

HONTH	10-DAY PERIOD	AREA	N	ASIA75B	YUK758	KUSK75B	BR1 S 7 5 B	CENT75B	SEBC75B
JUNE	Al.l.	E7050	39	9.5 ( 18.6)	22.6 ( 27.2)	58.8 ( 29.9)	0	9.0 ( 22.6)	0
JUNE	21-30	5	28	0	20,6 ( 26,1)	52.6 ( 28.5)	0	26.8 ( 24.0)	0
JUNE	ALL.	5	64	9.9 (15.3)	29.1 ( 22.3)	47.9 (-23.3)	0	13.2 ( 19.5)	o
JULY	ALI.	8	28	9.9 (16.5)	2.3 (21.3)	87.8 ( 26.4)	O	0	0
JUNE	21-30	MS-PAC	30	0	23.0 ( 25.8)	48.0 ( 27.5)	0	28.9 ( 23.7)	0
JUNE	Al.L	MS-PAC	66	9.6 ( 14.8)	29.9 ( 22.1)	48.0 (23.1)	υ	12.5 ( 18.9)	0
JULY	ALL	MS-BS	48	14.1 ( 16.3)	5.6 (19.6)	75.2 ( 26.5)	0	Ü	5.0 ( 12.0

Appendix Table H5. Estimates of the western Alaskan stock composition of brood year 1976 chinook salmon caught as immature 1.3's in 1981.

MONTH	10-DAY PERIOD		N	AS1A76B	YUK 76B	KUSK76B	BR157,6B	CENT76B	SEBC76B
JUNE	11-20	E7050	49	16.4 ( 15.1)	59.7 ( 18.5)	0	0	0	23.9 ( 17.2)
JULY	1-10	E7050	26	0	44.4 ( 27.6)	0	U	20.5 ( 39.8)	35.1 ( 33.6)
JUNE	Al.i.	E7048	46	24.8 ( 20.7)	44.8 ( 26.2)	0	0	7.6 ( 32.3)	22.8 ( 25.5)
JUNE	Al.L	E7050	124	13.6 ( 10.9)	54.9 ( 17.6)	()	0	16.7 (-22.5)	14.8 ( 14.8)
JULY	Al.I.	8056	25	0.6 ( 15.3)	66.0 (31.2)	0	0	33.4 ( 32.2)	0
JUNE	11-20	5	64	18.3 ( 13.6)	61.1 ( 16.2)	0	0	0	20.6 ( 14.5)
	21-31	5	25	26.1 ( 24.7)	52.2 ( 30.2)	0	0	21.7 ( 29.1)	0
JUNE	ALL	5	177	19.4 ( 10.2)	50.7 ( 14.7)	0	0	12.9 ( 18.6)	17.1 ( 12.8)
JULY	ALL	10	28	0	59.1 (21.4)	0	0	40.9 (21.4)	0
JUNE	11-20	MS-PAC	64	18.3 ( 13.6)	61.1 ( 16.2)	0	0	0	20.6 ( 14.5)
JULY	11-20	MS-BS	27	20.5 ( 24.0)	60.4 (39.5)	. 0	5.9 ( 30.7)	0	13.2 ( 22.3)
JULY	21-31	MS-PAC	25	26.1 ( 24.7)	52.2 ( 30.2)	0	0	21.7 ( 29.1)	0
JUNE	ALL	MS-PAC	186	19.6 ( 10.0)	51.0 ( 14.4)	0	0	10.6 (18.0)	18.8 ( 12.7)
JULY	ALL.	MS-BS	59	5.2 ( 12.1)	58.2 ( 20.9)	O	0	36.6 (21.6)	0